<u>Noise</u>

CALIBRATION CERTIFICATE

Certificate Informat	ion		
Date of Issue	11-Feb-2022	Certificate Number	MLCN220284S
Customer Informati	on		
Company Name	Acuity Sustainability Consulting	Limited	
Address	Unit E, 12/F., Ford Glory Plaza,		
	Nos. 37-39 Wing Hong Street,		
	Cheung Sha Wan, Kowloon, HK		
Equipment-under-To	est (EUT)		
Description	Sound Level Calibrator		
Manufacturer	Rion		
Model Number	NC-74		
Serial Number Equipment Number	34504770		
Equipment Number			
Calibration Particul	ur		
Date of Calibration	11-Feb-2022		
Calibration Equipment	4231(MLTE008) / AV200063 / 2		
	1357(MLTE190) / MLEC21/05/0	2 / 26-May-22	
Calibration Procedure	MLCG00, MLCG15		
		22.00	
Calibration Conditions	Laboratory Temperature Relative Humid	$23 \degree C \pm 5 \degree C$ ity $55\% \pm 25\%$	
	EUT Stabilizing Time		
	Warm-up Time	Not applicable	
	Power Supply	Internal battery	
Calibration Results	Calibration data were detailed in t		
	Calibration result was within EUT		
Approved By & Date			
	/	1	
-	/	K.O. Lo	11-Feb-2022
Statements			
 Calibration equipment used The results on this Calibration 	for this calibration are traceable to nation	al / international standards.	
not include allowance for the	e EUT long term drift, variation with env	asured at the time of the calibration and the un ironmental changes, vibration and shock durin	certainties quoted will
overloading, mishandling, m	isuse, and the capacity of any other labor	atory to repeat the measurement.	
 MaxLab Calibration Centre The copy of this Certificate 	Limited shall not be liable for any loss or	damage resulting from the use of the EUT.	
prior written approval of Ma	Is owned by MaxLab Calibration Centre I	Limited. No part of this Certificate may be rep	broduced without the

Page 1 of 2

.

Certificate No. MLCN220284S

Calibration Data					
EUT Setting	Standard Reading	EUT Error from Setting	Calibration Uncertainty	EUT Specification	
94 dB	94.0 dB	0.0 dB	0.20 dB	±	0.3 dB
		- END -			
Calibrated By : Date :	Dan 11-Feb-22		Checked Date :	By :	K.O. Lo 11-Feb-22

Page 2 of 2

Certificate of Calibration

for

Description:	Sound Level Meter
Manufacturer:	NTi Audio
Type No.:	XL2 (Serial No.: A2A-09696-E0)
Microphone:	ACO 7052 (Serial No.:68840)
Preamplifier:	NTi Audio M2211 MA220 (Serial No.:5287)
	Submitted by:
Customer:	Acumen Environmental Engineering and Technologies Co.
	Ltd.
Address:	Unit D, 12/F, Ford Glory Plaza,
	Nos. 37-39 Wing Hong Street,
	Cheung Sha Wan, Kowloon, Hong Kong
	Nos. 37-39 Wing Hong Street,

Upon receipt for calibration, the instrument was found to be:

\checkmark	Within
	Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 24 March 2022

Date of calibration: 26 March 2022

le Calibrated by:

Calibration Technician

Date of issue: 26 March 2022

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Page 1 of 4

Certificate No.: APJ21-161-CC001

Room 422, Leader Industrial Centre, 57-59 Au Pui Wan Street, F	o Tan, Shatin, N.T., Hong Kong
Tel: (852) 2668 3423	Fax:(852) 2668 6946
Homepage: http://www.aa-lab.com	E-mail:inquiry@aa-lab.com

1. Calibration Precaution:

ø

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:	22.6 °C
Air Pressure:	1006 hPa
Relative Humidity:	74.5 %

3. Calibration Equipment:

	Туре	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV200041	HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.1	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.1	Ref
30-130	dBA	SPL	Fast	104	1000	104.1	±0.3
	-			114		114.1	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.1	Ref
30-130 UBA	IDA SFL	Slow	94		94.1	±0.3	

Page 2 of 4

Certificate No.: APJ21-161-CC001

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. We	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.0	±2.0
					63	94.1	±1.5
					125	94.1	±1.5
					250	94.0	±1.4
30-130	dB	SPL	Fast	94	500	94.1	±1.4
					1000	94.1	Ref
					2000	94.3	±1.6
					4000	94.9	±1.6
					8000	93.6	+2.1; -3.1

A-weighting

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.7	-39.4 ±2.0
					63	67.9	-26.2±1.5
					125	78.0	-16.1±1.5
					250	85.4	-8.6±1.4
30-130	dBA	SPL	Fast	94	500	90.9	-3.2±1.4
					1000	94.1	Ref
					2000	95.5	+1.2±1.6
					4000	95.9	$+1.0 \pm 1.6$
					8000	92.5	-1.1+2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB			Specification, dB
					31.5	91.0	-3.0 ±2.0
					63	93.2	-0.8±1.5
					125	93.9	-0.2 ±1.5
					250	94.0	-0.0±1.4
30-130	dBC	SPL	Fast	94	500	94.1	-0.0±1.4
					1000	94.1	Ref
					2000	94.1	-0.2 ±1.6
					4000	94.1	-0.8±1.6
					8000	90.6	-3.0 + 2.1: -3.1

Certificate No.: APJ21-161-CC001

Page 3 of 4

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com

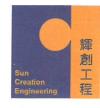
5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.05
	63 Hz	± 0.05
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.


Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Page 4 of 4

Certificate No.: APJ21-161-CC001

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C216243 證書編號

Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號 Serial No. / 編號	目 (Job No. / 序引編號: IC21-2101) Date of Receipt / 收件日期: 12 October 2021 Mini Anemometer RS PRO RS-90 210722168 Acuity Sustainability Consulting Limited Room C 11/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon
TEST CONDITIONS / 》 Temperature / 溫度 : Line Voltage / 電壓 :	\試條件 (23 ± 2)℃ Relative Humidity / 相對濕度 : (50 ± 25)%
TEST SPECIFICATION Calibration check	S / 測試規範
DATE OF TEST / 測試日	期 : 25 October 2021
The results are detailed in The test equipment used for	ticular unit-under-test only. he subsequent page(s). r calibration are traceable to National Standards via : Hong Kong Special Administrative Region Standard & Calibration Laboratory eysight Technologies GmbH, Germany atory, Germany
Tested By : 測試	CKLO CKLO Assistant Engineer
Certified By : 核證	<u>Chu Uu C</u> H C Chan Engineer Date of Issue : 26 October 2021 簽發日期

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C216243 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. Test equipment :

Equipment ID	Description	Certificate No.
CL018	Portable Calibrator	C204749
CL041 & CL041B	Digital Thermometer	C212654
CL042 & CL042B	Digital Thermometer	C212655
CL292	Recorder	C214057
CL330	Environmental Chamber	C205909
CL386	Multi-function Measuring Instrument	S16494

- 3. Test procedure : MA006 & MA130N.
- 4. Results :

4.1 Air Velocity

Applied	UUT	Measured Correction			
Value	Reading	Value Measurement Uncertainty			
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor	
2.01	1.70	+0.31	0.15	2.0	
4.00	3.75	+0.25	0.20	2.0	
6.01	5.81	+0.20	0.25	2.0	
8.00	7.74	+0.26	0.29	2.0	
10.01	9.84	+0.17	0.34	2.0	

The results presented are the mean of 10 measurements at each calibration point.

4.2 Temperature

Applied	UUT	Measured Correction		
Value	Reading	Value Measurement Uncertainty		
(°C)	(°C)	(°C)	Expanded Uncertainty (°C)	Coverage Factor
25.0	24.8	+0.2	0.5	2.0

The results presented are the mean of 3 measurements at each calibration point.

Remarks : - The Measured Corrections are defined as : Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Africa RS Components SA

P.O. Box 12182, Vorna Valley, 1686 20 Indianapolis Street, Kyalami Business Park, Kyalami, Midrand South Africa www.rs-components.com

Asia

RS Components Ltd.

Suite 1601, Level 16, Tower 1, Kowloon Commerce Centre, 51 Kwai Cheong Road, Kwai Chung, Hong Kong www.rs-components.com

China

RS Components Ltd.

Suite 23 A-C East Sea Business Centre Phase 2 No. 618 Yan'an Eastern Road Shanghai, 200001 China www.rs-components.com

Europe

RS Components Ltd.

PO Box 99, Corby, Northants. NN17 9RS United Kingdom www.rs-components.com

Japan RS Components Ltd.

West Tower (12th Floor), Yokohama Business Park, 134 Godocho, Hodogaya, Yokohama, Kanagawa 240-0005 Japan www.rs-components.com

U.S.A

Allied Electronics 7151 Jack Newell Blvd. S.

Fort Worth, Texas 76118 U.S.A. www.alliedelec.com

South America RS Componentes Limitada

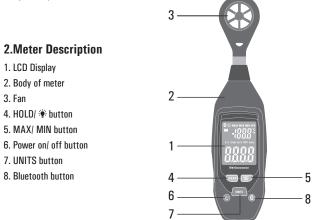
Av. Pdte. Eduardo Frei M. 6001-71 Centro Empresas El Cortijo Conchali, Santiago, Chile www.rs-components.com

Instruction Manual

RS-90

Stock No: 155-8899

Mini Anemometer



(E 🗵

1.Introduction

The Thermo-Anemometer measures Air velocity and temperature. Careful use of this meter will provide years of reliable service.

3.Button Description

Power on/ off, Auto-power off:

Power on: Short press button "O" to power on, system default auto power off. Long press to power on and disable auto power off function.Long press the button again to enable the auto power off function.

Power off: Short press button "O" to power off

Auto-power off: Auto-power off signal " \odot " displays in the left coner of LCD and the instrument will auto-power off in 10 minutes of no button operations.

If press the power on/off button for over 1 minute. It will be recognized as faulty operation and the instrument will auto power off.

UNITS button: Short press to switch air velocity unit; Long press to switch temperature unit.

S button: Long press to activate or deactivate Bluetooth.

31/01/2018 Version No. 001

Mini Anemometer / English

HOLD/ *** button**: Short press to hold the current data; Long press to activate or deactivate backlight.

MAX/ MIN button: Short press to record Maximum, Minimum and Average readings of temperature and Air velocity.

Note: MAX/ MIN button is deactivated when hold the current readings.

4.Display Layout

- S: Bluetooth symbol
- E : Low battery indicator
- 𝔅 : Timing power off symbol
- MAX: Maximum reading of temperature air velocity
- MIN: Minimum reading of temperature air velocity
- **AVG:** Average reading of temperature air velocity

HOLD: Hold the displayed temperature/ air velocity readings.

°C/ °F: Temperature measurement unit

m/s, ft/min, km/h, MPH, knots: Air velocity measurement unit. Larger LCD digits at botton of display is Air Velocity readings Smaller LCD digits at top, right of display is Temperature readings

• Data Hold

Short press hold button to freeze the temperature and velocity readings, meanwhile, hold symbol displayed on LCD when measures. Press hold button again to return normal measurement.

• Temperature and Air velocity measurement

- 1. Turn on the instrument by pressing power on/off button.
- Press UNITS button to select unit of measurement. Note: After power on, the meter will display the presetb unit before last power off.
- 3. Put the instrument in environment that is to be measured.
- 4. Observe readings on the LCD display, The larger digits displayed on main LCD is Air Velocity reading.

The smaller digits displayed on upper right LCD is temperature reading.

MAX/MIN/AVG reading

1. Press MAX/MIN button for the first time, the instrument will enter Max tracking mode. The tracked max reading will display on the LCD.

- Press MAX/MIN button for the second time, the instrument will enter Min tracking mode. The tracked min reading will display on the LCD.
- 3. Press MAX/MIN button for the third time, the instrument will enter Avg tracking mode. The tracked average reading will display on the LCD.

4. Press MAX/MIN button for the fourth time, the current reading will display on the LCD.

Note: Avg mode will automatically stop in 2 hours and the instrument will auto power off

• Bluetooth communication

Long press Bluetooth button to activate bluetooth function. The instrument can transmit measured datas and instrument status to software and the software can control the instrument.

The instrument will automatically turn off in order to lengthen the battery working life. When symbol 🛱 appears on the LCD, please replace the old battery with new ones.

1. Open the battery compartment with a suitable screwdriver.

- 2. Replace 9 V battery.
- 3. Mount the battery compartment again.

4. Specifications

Air velocity	Range	Resolution	Accuracy
n/s	1.10 – 25.00 m/s	0.01 m/s	±(3%+0.30 m/s)
km/h	4.0 – 90.0 km/h	0.1 km/h	\pm (3% + 1.0 km/h)
ft./min	220 – 4920 ft./min	1 ft./min	±(3%+40 ft./min)
MPH	2.5 – 56.0 MPH	0.1 MPH	\pm (3% + 0.4 MPH)
knots	2.2 – 48.0 knots	0.1 knots	\pm (3%+0.4 knots)
Air temperature	-10 - 60°C (14 ~ 140°F)	0.1°C/°F	2.0°C (4.0°F)

Air Quality

Verification Test Date:	3-Dec-22	to	4-Dec-22
Next Verification Test Date:	2-Dec-23		
Unit-under-Test- Model No.	Sibata LD-5R		
Unit-under-Test Serial No.	0Z4545		
Our Report Refrence No.	RPT-22-HVS-0026		
Calibration Location:	AM2, Located near	the Lead	hate Treatment Works within the NENT Landfill

Standard Equipment Information						
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator			
Standard Equipment Model No.		TE-5170X	TE-5025A			
Equipment serial no.	MFC	1106	3465			
Last Calibration Date		1-Dec-22	28-Jun-22			
Next Calibration Date		31-Jan-23	27-Jun-23			

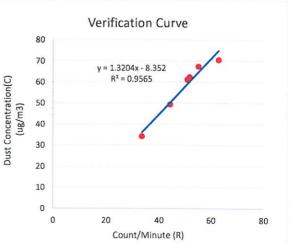
Verification Date		Time			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00120	51	10251	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00102	34	6444	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00111	44	8193	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00122	55	9927	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00112	63	11340	R222044/3	70
					0.00114				

1.1

By Linear Regression of y on x:

slope, mh=	1.3204
intercept,ch=	-8.3520
*Correlation Coefficient,R=	0.9780

Verification Test Result: Strong Correlation, Results were accepted.


K-Factor to be inputted in LD-5R (corrected 1 decimal point):

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Date: 05-12-2022

Technical Mana

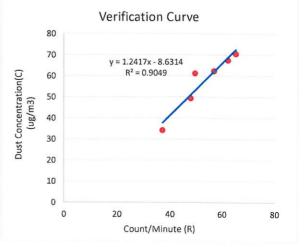
Verification Test Date:	3-Dec-22	to	4-Dec-22
Next Verification Test Date:	2-Dec-23		
Unit-under-Test- Model No .:	Sibata LD-5R		
Unit-under-Test Serial No .:	882106		
Our Report Refrence No .:	RPT-22-HVS-0027		
Calibration Location:	AM2, Located near	the Leac	hate Treatment Works

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification	Date		Time			Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00123	50	9983	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00092	37	7146	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00103	48	8870	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00108	62	11183	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00110	57	10260	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00108	65	11760	R222044/3	70
					0.00107				

1.1

within the NENT Landfill


K-Factor to be inputted in LD-5R (corrected 1 decimal point):

By Linear Regression of y on x:

slope, mh=	1.2417
intercept,ch=	-8.6314
*Correlation Coefficient,R=	0.9513

Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

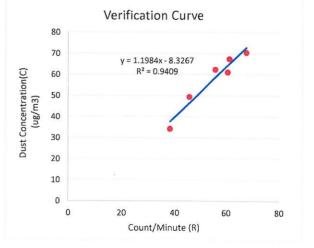
Date: 05-12-2022

Technical Manager

Verification Test Date:	3-Dec-22	to	4-Dec-22
Next Verification Test Date:	2-Dec-23		
Unit-under-Test- Model No.	Sibata LD-5R		
Unit-under-Test Serial No.	882110		
Our Report Refrence No.	RPT-22-HVS-0025		
Calibration Location:	AM2, Located near	the Leac	hate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification	Date	Time			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00101	61	12194	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00089	38	7337	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00108	46	8439	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00110	61	11003	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00112	56	10080	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00104				


K-Factor to be inputted in LD-5R (corrected 1 decimal point): 1.0

By Linear Regression of y on x:

slope, mh=	1.1984
intercept,ch=	-8.3267
*Correlation Coefficient,R=	0.9700

Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Date: 05-12-2022

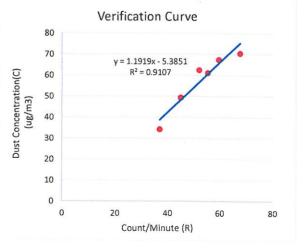
Technical Manager

Verification Test Date:	3-Dec-22	to	4-Dec-22
Next Verification Test Date:	2-Dec-23		
Unit-under-Test- Model No.	Sibata LD-5R		
Unit-under-Test Serial No.	942532		
Our Report Refrence No.	RPT-22-HVS-0024		
Calibration Location:	AM2, Located near	the Lead	chate Treatment Works within the NENT Landfill

Standard Equipment Information								
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator					
Standard Equipment Model No.		TE-5170X	TE-5025A					
Equipment serial no.	MFC	1106	3465					
Last Calibration Date		1-Dec-22	28-Jun-22					
Next Calibration Date		31-Jan-23	27-Jun-23					

Verification	Date	Time			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00111	55	11122	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00093	37	7082	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00110	45	8316	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00113	60	10704	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00108				

1.1


K-Factor to be inputted in LD-5R (corrected 1 decimal point):

By Linear Regression of y on x:

slope, mh=	1.1919
intercept,ch=	-5.3851
*Correlation Coefficient,R=	0.9543

Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By: Technical Manager

Date: 05-12-2022

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information							
Location:	NENTX	Site ID:	AM1	Date:	01-Dec-2022		
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li		

Ambient Condition

Corrected Pressure (mm Hg): 759	7 Temperature (deg K):	302.1
---------------------------------	------------------------	-------

Calibration Orifice

Model:	TE-5025A	Slope:	1.28946
Serial No.:	3465	Intercept:	-0.01207
Calibration Due Date:	28-Jun-23	Corr. Coeff	0.99998

Calibration Data					
Plate or	In,H2O	Qa, X-Axis	I, CFM	IC, Y-Axis	
Test #	(in)	(m3/min)	(chart)	(corrected)	
1	0.60	0.388	45.0	28.37	
2	1.10	0.522	51.0	32.16	
3	1.50	0.608	54.0	34.05	
4	1.90	0.683	57.0	35.94	
5	2.40	0.767	60.0	37.83	

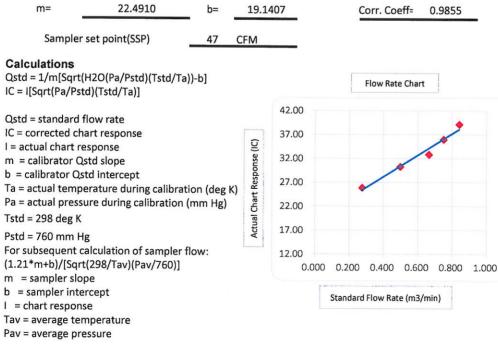
Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	24.8397	b=	18.9	217	C	Corr. Coe	eff= C).9988	
Sampler s	et point(SSP)	49	CFM						
Calculations Qstd = 1/m[Sqrt(H IC = I[Sqrt(Pa/Pstc	12O(Pa/Pstd)(Tstd/Ta 1)(Tstd/Ta)]	a))-b]				Flow Rate	e Chart		
Ostd = standard fl	owrate			42.00					
IC = corrected cha				37.00			-	~	
I = actual chart res m = calibrator Qs	td slope		Actual Chart Response (IC)	32.00		/	a a c		
b = calibrator Qst Ta = actual tempe	d intercept rature during calibra	tion (deg K)	Resp	27.00		4			
	re during calibration		Chart	22.00					
Tstd = 298 deg K			ctual	17.00					
Pstd = 760 mm Hg	; Ilculation of sampler	flow	A	12.00					
	298/Tav)(Pav/760)]	1000.		0.00	0 0.200	0.400	0.600	0.800	1.000
m = sampler slop b = sampler inter l = chart response Tav = average tem Pav = average pres	cept e iperature				Standard	l Flow Rat	e (m3/mi	n)	
Checked by:	1Az	<u>/</u>			Date:	01-De	c-2022	2	_

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information					
Location:	NENTX	Site ID:	AM2	Date:	01-Dec-2022
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition


Corrected Pressure (mm Hg):	759.7	Temperature (deg K):	302.1
-----------------------------	-------	----------------------	-------

Calibration Orifice

Model:	TE-5025A	Slope:	1.28946
Serial No.:	3465	Intercept:	-0.01207
Calibration Due Date:	28-Jun-23	Corr. Coeff	0.99998

Plate or	In,H2O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m3/min)	(chart)	(corrected)
1	0.30	0.277	41.0	25.85
2	1.00	0.498	48.0	30.27
3	1.80	0.665	52.0	32.79
4	2.30	0.751	57.0	35.94
5	2.90	0.842	62.0	39.09

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

Checked by:

Date: 01-Dec-2022

0.800

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information					
Location:	NENTX	Site ID:	AM3	Date:	01-Dec-2022
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Corrected Pressure (mm Hg): 759	7 Temperature (deg K):	302.1
---------------------------------	------------------------	-------

Calibration Orifice				
Model:	TE-5025A	Slope:	1.28946	
Serial No.:	3465	Intercept:	-0.01207	
Calibration Due Date:	28-Jun-23	Corr. Coeff	0.99998	

	Calibration Data					
Plate or	In,H2O	Qa, X-Axis	I, CFM	IC, Y-Axis		
Test #	(in)	(m3/min)	(chart)	(corrected)		
1	0.40	0.319	42.0	26.48		
2	0.90	0.473	46.0	29.01		
3	1.20	0.545	51.0	32.16		
4	1.90	0.683	56.0	35.31		
5	2.20	0.735	58.0	36.57		

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

Sampler set point(SSP) 49 CFM Calculations	Flow Rate Chart
Calculations	Flow Rate Chart
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]	
42.00	
Qstd = standard flow rate IC = corrected chart response I = actual chart response	×
m = calibrator Qstd slope 32.00	
I = actual chart response Image: Constraint of the system m = calibrator Qstd slope 32.00 b = calibrator Qstd intercept 27.00 Ta = actual temperature during calibration (deg K) 22.00 Pa = actual pressure during calibration (mm Hg) 22.00 Tstd = 298 deg K 17.00	•
Pa = actual pressure during calibration (mm Hg)	
Tstd = 298 deg K Pstd = 760 mm Hg 17.00	
For subsequent calculation of sampler flow:12.00(1.21*m+b)/[Sqrt(298/Tav)(Pav/760)]0.000	0.200 0.400 0.600
m = sampler slope b = sampler intercept l = chart response	andard Flow Rate (m3/min)
Tav = average temperature Pav = average pressure	
Checked by: Da	ate: 01-Dec-2022

RECALIBRATION DUE DATE:

June 28, 2023

	6e	rtife	cate	of.	Gal	ibri	rtion	
			Calibration	Certificati	on Informat	ion		
Cal. Date:	June 28, 20	022	Roots	meter S/N:	438320	Ta:	296	°K
Operator:	Jim Tisch					Pa:	755.1	mm Hg
Calibration	Model #:	TE-5025A	Calil	prator S/N:	3465			
	[Vol. Init	Vol. Final	ΔVol.	ΔTime	4.0		1
	Run	(m3)	(m3)	(m3)		ΔP (mm Ha)		
	1	1	2	(115)	(min) 1.4290	(mm Hg) 3.2	(in H2O)	
	2	3	4	1	1.0130	6.4	2.00	
	3	5	6	1	0.9050	7.9	5.00	
	4	7	8	1	0.8590	8.8	5.50	
	5	9	10	1	0.7110	12.8	8.00	
) ata Tabula		12.0	0.00	
		[
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axi		Va	(x-axis)	(y-axis)	
	0.9961	0.6970	1.414		0.9958	0.6968	0.8854	
	0.9918	0.9791	2.000		0.9915	0.9788	1.2522	
	0.9899	1.0938	2.236		0.9895	1.0934	1.4000	
	0.9887	1.1509	2.345		0.9883	1.1506	1.4683	
	0.9834	1.3831	2.828		0.9830	1.3826	1.7708	
	OCTD	m=	2.059				1.28946	
	QSTD	b= -0.01929		QA	b=	-0.01207		
		r= 0.99998				r=	0.99998	
				Calculation	าร			
	Vstd=	$\Delta Vol((Pa-\Delta P))$	/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔF	P)/Pa)	
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subseque	ent flow rat	te calculation	is:		
	$\mathbf{Qstd} = 1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right) - b\right) \qquad \qquad \mathbf{Qa} = 1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)\left(\frac{Tstd}{Ta}\right)}\right) - b\right) \qquad \qquad \qquad \mathbf{Qa} = 1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)\left(\frac{Tstd}{Ta}\right)\right) - b\right) = 1/m\left(\frac{Qa}{Qa}\right) - \frac{Qa}{Qa} = 1/m\left(\frac{Qa}{Qa}\right$					(Ta/Pa))-b)		
	Standard	Conditions						
Tstd:	298.15			Г		RECAL	IBRATION	
Pstd:		mm Hg		1				
		ey	1120)				nual recalibratio	
and a second		er reading (ir eter reading (egulations Part 5	
		perature (°K)					Reference Meth	
		essure (mm l	-lg)				ended Particulate	
: intercept	and pr		.0)		the	Atmosphe	re, 9.2.17, page 3	0
n: slope				L				

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

PROMAT (HK) LTD

寶時(香港)有限公司

901 New Trend Centre, 704 Prince Edward Road East, San Po Kong, Kowloon, Hong Kong Tel: (852)2661-2392 Fax: (852)2661-2086 Email:info@promat.hk-http://www.promat.hk

Your Solution To Testing Instrumen

Calibration Certificate

PASS

Customer Name	Paul Y Construction Co. Ltd
Model	PS200
Serial	373075
Tested On	16 November, 2022
Cal Expires	16 November, 2023
Audible Alarm	PASS
Visual Alarm	PASS
Calibrated For	METHANE
100% LEL Equivalent	4.4% by VOL

Overall Results

Calibration Result

Gas Applied	Range	Reading	Calibrated	Result
Zero Air	% LEL	0	0	PASS
Zero Air	% O2	20.9	20.9	PASS
Zero Air	PPM CO	0	0	PASS
Zero Air	PPM H2S	0	0	PASS

Gas Applied	Range	Reading	Calibrated	Result
50% LEL Methane	% LEL	61	50	PASS
18% VOL Oxygen	% O2	17.8	N/A	PASS
100 PPM Carbon Monoxide	РРМ СО	71	100	PASS
25 PPM Hydrogen Sulphide	PPM H2S	22	25	PASS

Lono

Calibrated By Ivan Lo :

Water Quality

Supply, Repair, Rental, Scanning and Calibration Service of Surveying Instruments and Accessories

CERTIFICATE OF CALIBRATION

Certificate No.	: CS-CC- 220859	Customer	: Paul Y Engineering Group
Manufacturer	: Yamayo	Address	: 11/F., Paul Y. Centre,
Equipment	: Water Level Measure		51 Hung To Road,
Model	:RWL100		Kwun Tong, Kowloon, HK
Serial No.	: 11801	Calibration Interval	: 12 months
Calibration Date	: 4th August, 2022	Reference Document	CS/ME/1(HKST)
Expire Date	: 3rd August, 2023	Report No.	: CS-CR- 220859

The instrument has been checked and calibrated according to document procedures and using standards and instruments which are traceable to international accepted standards. The standards and instruments used in the calibration are calibrated on a schedule which is adjusted to maintain traceability at the required accuracy level, or have been derived from the ratio type of self-calibration techniques. This is established by our Quality Management System, audited to ISO9001 :2015 by an independent national accredited body.

The specified calibration interval is a recommendation. Depending on the type of use ambient conditions or accuracy requirements, other calibration intervals may be applicable. The user shall be responsible that calibration is carried out at adequate intervals.

YSF Corporation Ltd. hereby certifies this instrument meets or exceeds all published specifications of the manufacturer at present inforce. This calibration certificate may only be distruibuted in a complete and unchanged form. Unsigned calibration certificates are invalid.

Calibrated by

Wayne

Wayne Ng, Service Engineer 4th August, 2022

Wallace Yu, Service Manager 4th August, 2022

CKL/CSL/220859

YSF Corporation Ltd.

Calibration Report

Certificate No.	: CS-CC-220859		Certificate Report No. : CS-CR-220859		
Client	: Paul Y Engineerir	ng Group			
Address	: 11/F., Paul Y. Centre, 51 Hung To Road, Kwun Tong, Kowloon, HK				
Item Calibrated	:Name/Description	1: Water Level 1	Measure		
	Manufacturer:	Yamayo			
	Model:	RWL100	Serial No: 11801		
Reference Standard	: 784049 Calibration check	according to cu	stomer's requirement.		
Calibration Method	: Procedure CS01				
Calibration Condition	S				
Temperature	:(26±3°C)				
Relative Humidity	7 : 90% RH				
Date of Test	: 4th August, 2022				
Test Results	: PASS (All calibrated calibration	-	re within the tolerances as shown in the		
Calibrated by : <u>Wayn</u> Wayne Ng, Servic Date: 4th August, 2	e Engineer	HKCS Appro	ved Signatory: Wallace Yu, Service Manager Date: 4th August, 2022		

Notes: 1, The test equipment used for calibration are traceable to national standards/international system of units(SI) 2, The values given in this calibration certificate only to the values measured at the time of test & any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. YSF Corporation Ltd. shall not be liable for any loss/damage resulting from the use of the equipment.

3, The test results apply to the above Unit-Under-Test only.

4, This certificate shall not be reproduced, except on full, without approval of YSF Corporation Ltd.

orporat 5A, Blk1 Kin Ho Ind. Bldg., 20-24 Au Pui Wan St., Fo Tan, Shatin, N.T., HK, rel: (852) 8109 8368 Fax: (852) 3007 4857 E-mail: sales@ysftool.com www.sokkia.com.hk www.ysf.com.hk Supply, Repair, Rental, Scanning and Calibration Service of Surveying Instruments and Accessories

CERTIFICATE OF CALIBRATION

Certificate No.	: CS-CC- 220858	Customer	: Paul Y Engineering Group
Manufacturer	: Yamayo	Address	:11/F., Paul Y. Centre,
Equipment	: Water Level Measure		51 Hung To Road,
Model	RWL50		Kwun Tong, Kowloon, HK
Serial No.	: 12711	Calibration Interval	: 12 months
Calibration Date	: 4th August, 2022	Reference Document	CS/ME/1(HKST)
Expire Date	: 3rd August, 2023	Report No.	: CS-CR- 220858

The instrument has been checked and calibrated according to document procedures and using standards and instruments which are traceable to international accepted standards. The standards and instruments used in the calibration are calibrated on a schedule which is adjusted to maintain traceability at the required accuracy level, or have been derived from the ratio type of self-calibration techniques. This is established by our Quality Management System, audited to ISO9001 :2015 by an independent national accredited body.

The specified calibration interval is a recommendation. Depending on the type of use ambient conditions or accuracy requirements, other calibration intervals may be applicable. The user shall be responsible that calibration is carried out at adequate intervals.

YSF Corporation Ltd. hereby certifies this instrument meets or exceeds all published specifications of the manufacturer at present inforce. This calibration certificate may only be distruibuted in a complete and unchanged form. Unsigned calibration certificates are invalid.

Calibrated by

Checked by

Wallace Yu, Service Manager 4th August, 2022

Wayne Wayne Ng, Service Engineer

CKL/CSL/220858

4th August, 2022

YJF Corporation Ltd.

Calibration Report

Certificate No.	: CS-CC-220858		Certificate Report No. : CS-CR-220858		
Client	: Paul Y Engineeri	ng Group			
Address	: 11/F., Paul Y. Centre, 51 Hung To Road, Kwun Tong, Kowloon, HK				
Item Calibrated	:Name/Descriptio	n: Water Level	Measure		
	Manufacturer:	Yamayo			
	Model:	RWL50	Serial No.: 12711		
Reference Standard	: 784049 Calibration check	according to c	ustomer's requirement.		
Calibration Method	: Procedure CS01				
Calibration Condition	ns				
Temperature	:(26±3°C)				
Relative Humidi	ty : 90% RH				
Date of Test	: 4th August, 2022				
Test Results	: PASS (All calibrati attached calibrati		ere within the tolerances as shown in the		
Calibrated by : <u>Way</u> Wayne Ng, Servi Date: 4th August,	ce Engineer	HKCS Appr	oved Signatory: Wallace Yu, Service Manager Date: 4th August, 2022		
2, The values given i will not include allow	in this calibration certification certification of the equipment here.	te only to the valuong term drift, van	nal standards/international system of units(SI) ues measured at the time of test & any uncertainties quoted riations with environmental changes, vibration and shock ity of any other laboratory to repeat the measurement.		

YSF Corporation Ltd. shall not be liable for any loss/damage resulting from the use of the equipment.

3, The test results apply to the above Unit-Under-Test only.

4, This certificate shall not be reproduced, except on full, without approval of YSF Corporation Ltd.

Calibration Certificate

. .

Certificate No	. 210252	3	Page	e 1 of 2 Pages
Customer :	Acuity Sustainability Con	sulting Limited		
Address :	Unit E, 12/F, Ford Glory I	Plaza, No. 37-39 Wing H	ong Street, Cheur	ng Sha Wan, Kowloon, H.K.
Order No. :			Date of receip	
Item Tested	ł			
Description	: Flow Probe			
Manufacturer	: Global Water		I.D.	:
Model	: FP111		Serial No.	: 22K100859
Test Condit	tions			
Date of Test :	7-Nov-22		Supply Voltag	je :
Ambient Tem	perature : 23°C		Relative Humi	• A
				Tarty . 7070
Test Specif	ications			
Calibration che	ck.			
Ref. Document	/Procedure : V12			
	S			
Test Result				
	within the manufacturer's	specification		
All results were	within the manufacturer's s shown in the attached pag			
All results were	within the manufacturer's s shown in the attached pag			
All results were The results are	shown in the attached pag			
All results were The results are Main Test equij	shown in the attached pag			<u>Traceable to</u>
All results were The results are Main Test equij Equipment No.	shown in the attached pag	le(s).		<u>Traceable to</u> NIM-PRC
All results were The results are Main Test equij Equipment No. S179	shown in the attached pag pment used: <u>Description</u>	e(s). <u>Cert. No.</u>		
All results were The results are Main Test equij Equipment No. S179	shown in the attached pag pment used: <u>Description</u> Std. Tape	e(s). <u>Cert. No.</u> 201868		NIM-PRC
All results were The results are Main Test equij Equipment No. S179	shown in the attached pag pment used: <u>Description</u> Std. Tape	e(s). <u>Cert. No.</u> 201868		NIM-PRC
All results were The results are Main Test equij Equipment No. S179	shown in the attached pag pment used: <u>Description</u> Std. Tape	e(s). <u>Cert. No.</u> 201868		NIM-PRC
	shown in the attached pag pment used: <u>Description</u> Std. Tape	e(s). <u>Cert. No.</u> 201868		NIM-PRC
All results were The results are Main Test equip <u>Equipment No.</u> S179 S136A S136A	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch	e(s). <u>Cert. No.</u> 201868 201878	t the time of the test a	NIM-PRC SCL-HKSAR
All results were The results are Main Test equip <u>Equipment No.</u> S179 S136A	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch	elate to the values measured at n drift, variations with environm	ental changes, vibrati	NIM-PRC SCL-HKSAR
All results were The results are Main Test equip Equipment No. S179 S136A The values given in vill not include allow overloading, mis-ha	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch	elate to the values measured at n drift, variations with environm her laboratory to repeat the me	ental changes, vibrati	NIM-PRC SCL-HKSAR
All results were The results are Main Test equip Equipment No. S179 S136A S136A	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch this Calibration Certificate only re wance for the equipment long term andling, or the capability of any oth age resulting from the use of the o	elate to the values measured at n drift, variations with environm her laboratory to repeat the me equipment.	iental changes, vibrati asurement. Hong Kor	NIM-PRC SCL-HKSAR and any uncertainties quoted ion and shock during transportation, ng Calibration Ltd. shall not be liable
All results were The results are Main Test equip Equipment No. S179 S136A The values given in vill not include allow overloading, mis-ha or any loss or dam	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch	elate to the values measured at 201868 201878 201878 elate to the values measured at n drift, variations with environm her laboratory to repeat the me equipment.	iental changes, vibrati asurement. Hong Kor	NIM-PRC SCL-HKSAR and any uncertainties quoted ion and shock during transportation, ng Calibration Ltd. shall not be liable
All results were The results are Main Test equip Equipment No. S179 S136A The values given in vill not include allow overloading, mis-ha or any loss or dam	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch this Calibration Certificate only re wance for the equipment long term andling, or the capability of any ott age resulting from the use of the o	elate to the values measured at 201868 201878 201878 elate to the values measured at n drift, variations with environm her laboratory to repeat the me equipment.	iental changes, vibrati asurement. Hong Kor	NIM-PRC SCL-HKSAR and any uncertainties quoted ion and shock during transportation, ng Calibration Ltd. shall not be liable
All results were The results are Main Test equip Equipment No. S179 S136A The values given in vill not include allow overloading, mis-ha or any loss or dam The test equipment the test results app	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch this Calibration Certificate only re wance for the equipment long term andling, or the capability of any ott age resulting from the use of the o	elate to the values measured al 201868 201878 201878 elate to the values measured al m drift, variations with environm her laboratory to repeat the me equipment. e to International System of Uni only	iental changes, vibrati asurement. Hong Kor ts (SI), or by reference	NIM-PRC SCL-HKSAR and any uncertainties quoted ion and shock during transportation, ng Calibration Ltd. shall not be liable
All results were The results are Main Test equip Equipment No. S179 S136A The values given in vill not include allow verloading, mis-ha or any loss or dam The test equipment the test results app	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch this Calibration Certificate only re- wance for the equipment long term andling, or the capability of any oth age resulting from the use of the of used for calibration are traceable only to the above Unit-Under-Test of	elate to the values measured al 201868 201878 201878 elate to the values measured al m drift, variations with environm her laboratory to repeat the me equipment. e to International System of Uni only	iental changes, vibrati asurement. Hong Kor	NIM-PRC SCL-HKSAR and any uncertainties quoted ion and shock during transportation, ng Calibration Ltd. shall not be liable e to a natural constant.
All results were The results are Main Test equip Equipment No. S179 S136A The values given in vill not include allow overloading, mis-ha or any loss or dam The test equipment The test results app	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch this Calibration Certificate only re wance for the equipment long term andling, or the capability of any ott age resulting from the use of the used for calibration are traceable by to the above Unit-Under-Test of Kin Wong	elate to the values measured at m drift, variations with environm her laboratory to repeat the me equipment. App	ental changes, vibrati asurement. Hong Kor ts (SI), or by reference proved by :	NIM-PRC SCL-HKSAR and any uncertainties quoted ion and shock during transportation, ng Calibration Ltd. shall not be liable
All results were The results are Main Test equip Equipment No. S179 S136A The values given in vill not include allow overloading, mis-ha or any loss or dam The test equipment The test results app Calibrated by his Certificate is issued b ong Kong Calibration Ltd	shown in the attached pag pment used: <u>Description</u> Std. Tape Stop Watch this Calibration Certificate only re wance for the equipment long term andling, or the capability of any ott age resulting from the use of the used for calibration are traceable by to the above Unit-Under-Test of Kin Wong	elate to the values measured at 201868 201878 201878 elate to the values measured at n drift, variations with environm her laboratory to repeat the me equipment. e to International System of Uni only App Date	ental changes, vibrati asurement. Hong Kor ts (SI), or by reference proved by :	NIM-PRC SCL-HKSAR and any uncertainties quoted ion and shock during transportation, ng Calibration Ltd. shall not be liable e to a natural constant.

Calibration Certificate

Certificate No. 210252

Page 2 of 2 Pages

Results :

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.96	1.0	± 0.1 m/s

Remarks : 1. UUT : Unit-Under-Test

2. Uncertainty : ± 1 %, for a confidence probability of not less than 95%.

----- END -----

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB100037 : 12 October 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan Kowloon (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	HORIBA U-53
Manufacturer :	HORIBA
Serial Number :	PORBNFNT
Date of Received :	10 October 2022
Date of Calibration :	12 October 2022
Date of Next Calibration :	11 January 2023
Request No. :	D-BB100037

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
pH value	APHA 21e 4500 H ⁺
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520 B
Dissolved oxygen	APHA 21e 4500 O
Turbidity	APHA 21e 2130 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.12	0.12	Satisfactory
7.42	7.61	0.19	Satisfactory
10.01	10.19	0.18	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
12	12.20	0.20	Satisfactory
26	25.36	-0.64	Satisfactory
37	35.44	-1.56	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.98	-0.20	Satisfactory
20	20.23	1.15	Satisfactory
30	31.20	4.00	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.	: R-BB100037
Date of Issue	: 12 October 2022
Page No.	: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.87	7.45	-0.42	Satisfactory
4.09	4.05	-0.04	Satisfactory
1.26	1.00	-0.26	Satisfactory
0.01	0.06	0.05	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.00		Satisfactory
10	9.34	-6.6	Satisfactory
20	19.3	-3.5	Satisfactory
100	101	1.0	Satisfactory
800	780	-2.5	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

• "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. • The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ----

Standard Operation Procedure For Digital Dust Indicator

Rev. A, R1

<u>Contents</u>

1.0	Introduction	3
2.0	Sampler Set-Up	4
3.0	Sampler Operations	5
4.0	Regular Instrument Checks	
5.0	Calibration Procedures	
6.0	Audit Schedule	

1 Introduction

- 1.1 The EIA has considered the potential dust impacts during the construction phase of projects. Construction dust arising from various construction activities would be the concern of different air sensitive receivers. A digital dust indicator would be used to measure the construction dust during the construction phase.
- 1.2 In this Standard Operation Procedure, Sibata LD-5R Digital Dust Indicator would be introduced.

2.0 Sampler Set-Up

- 2.1 Dust Monitoring Parameter
 - 2.1.1 According to the EM&A manual, the sampling frequency of at least 3 times in every 6 days should be undertaken when the highest dust impact occurs.
- 2.2 Monitoring Location
 - 2.2.1 Direction of the digital dust indicator shall be pointed to the construction site for measuring the dust emitted from the site. Example of set-up is shown as Figure 2.1

Figure 2.1 Digital dust indicator is pointed to construction site

3.0 Sampler Operations

- 3.1 Sibata LD-5R Digital Dust Indicator
 - 3.1.1 Sibata LD-5R digital dust indicator is a compact handheld dust indicator, which perform real time measurement of suspended particle matter in indoor spaces, public space. Component of Sibata LD-5R digital dust indicator us shown in Figure 3.1 and Figure 3.2

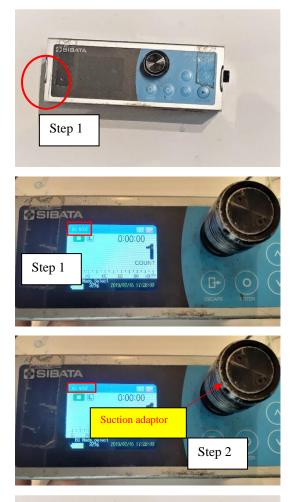


Figure 3.1 Top view of Sibata LD-5R digital dust indicator

Figure 3.2 Side view of Sibata LD-5R digital dust indicator

3.1.2 Operation of Sibata LD-5R digital dust indicator

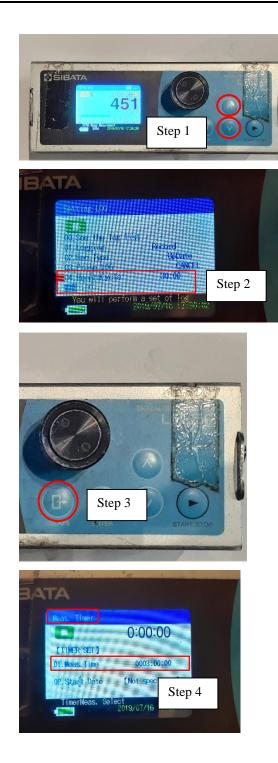
Procedure of starting monitoring

 Turn on the "On/Off" button at the side of instrument
 Program will be changed to "BG" mode and

leave it for 1 minute.

2. Pull out the Suction adaptor and turn the button at the side.

Cover with hand at the suction adaptor measure the background for 10 seconds.


3. Press " UP" and " DOWN" for choosing "SPAM Mode" for SPAM Measurement.

Reference:

SIBATA Scientific Technology Ltd.. (2017, June 18). Digital Dust indicatores, model LD-5R - SIBATA Scientific Technology Ltd.. YouTube. Retrieved February 10, 2023, from <u>https://www.youtube.com/watch?v=cuU4ptJISZM</u>

- 4. Press "Up" and "Down" to select"Measurement Mode" with 60 minutes interval and unit in ug/m³.
- 5. Press "Start/Stop" to start monitoring.

<u>Procedure of setting measurement timer</u>1. Press "Up" or "Down" to find "Setting LOG".

2. Select "Record Cycle" and change the record time subject to different project requirement.For example, setting the record cycle as 60 minutes for normal operation.

3. Press "ESCAPS" back to the main page.

4. Press "Up" or "Down" to access"Measurement Timer" and select"Measurement time" to change the time to 3 hours.

BATA Contract 100 Contract 1	
Setting LOG Setting LOG 00 2019/07/16 17:33:01 01 02 03 04 1 Step 2 You will perform a set of log 2019/07/16 17:35:36	

Procedure of accessing the data

1.Press "Up" or "Down" to "Setting LOG" page and select "See the log list"

2. Select the file to access the data respectively.

4.0 Regular Instrument Checks

- 4.1 As there would be constant use of instrument, regular checking would be recommended to check the condition. Items to be checked are stated in Table 4.1.
- Table 4.1 Checklist for instrument checking

Example	Description	Y/N	Remarks
THE REATE	Is there any damage for the digital dust indicator? Could the digital dust indicator be powered?		
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	Is the suction adaptor sensitive?		
Open the cover	Is the battery compartment well maintained? Any damage to the battery compartment?		

5.0 Calibration Procedures

5.1 Direct reading dust meters will be verified against calibrated high volume samples (HVSs) annually. A 2-day, three 3-hour measurement results per day from direct reading dust meter will be taken to compare with the sampling results from the HVS. The correlation between the direct reading dust meter and the HVS will then be concluded. By accounting for the correlation factor, the direct reading dust meter will be considered to achieve comparable results as that of the HVS.

6.0 Audit Schedule

- **6.1** Checklist of regular checking for digital dust meter which shown in Table 4.1 will be conducted bi-weekly by environmental technician to ensure the all digital dust meter are in good condition and submitted to supervisors. All checklists will be kept by supervisors.
- **6.2** Log book is provided to environmental technician record the transferal of equipment to other colleagues, reporting to supervisors is required.
- **6.3** All digital dust indicator will be calibrated annually in HOKLAS accredited laboratory. Calibration certificate will be provided after calibration.

OPERATIONS MANUAL

TE-5170 Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler

> Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, Ohio 45002

Toll Free: (877) 263 -7610 (TSP AND-PM10) **Direct**: (513) 467-9000 **FAX**: (513) 467-9009

> sales@tisch-env.com www.tisch-env.com

TE-5170 Mass Flow Controlled Total Suspended Particulate High Volume Air Sampler

Welcome

We are the experts in high volume air sampling, lead sampling, lead samplers, particulate monitoring, particulate emissions, pesticide monitoring, pesticide sampling, total suspended particles, particulate sampler, Federal Reference Method PM-10, Federal Reference Method PM2.5, EPA Method TO-4A, EPA Method TO-9A, EPA Method TO-13A. TEI is a family business located in the Village of Cleves, Ohio. TEI employs skilled personnel who average over 20 years of experience each in the design, manufacture, and support of air pollution monitoring equipment. Our modern well-equipped factory, quality philosophy and experience have made TEI the supplier of choice for air pollution monitoring equipment. Now working on the fourth generation, TEI has state-of-the-art manufacturing capability and is looking into the future needs of today's environmental professionals.

Assistance

If you encounter problems or require detailed explanations, do not hesitate to contact Tisch Environmental offices by e-mail or phone.

Toll Free: (877) 263 -7610 (TSP AND-PM10) **Direct**: (513) 467-9000 **FAX**: (513) 467-9009

sales@tisch-env.com www.tisch-env.com

Table of Contents

Welcome	3
Assistance	3
Introduction	6
EPA Standards	6
Safety Precautions	6
Important Safety Instructions	6
Electrical Installation	7
Do Not Abuse Cords	7
Extension Cords	7
Product Description	8
Introduction	8
Applications	8
Calibration Requirements	8
Calibration Kit	9
Parts	10
Assembly	12
Gabled Roof Assembly	13
Electrical Set-Up	15
Operations	17
Calibration Procedure	
Example Calculations	22
Total Volume	27
Sampler Operation	
Timer Preparation	29
Troubleshooting	30
Maintenance and Care	32
Motor Brush Replacement	
Warranty	

Assembly Drawings	37
TE-5005 Blower Motor Assembly	37
TE-5004 Filter Holder Assembly	38
Calibration Worksheet	
Calibrator Certificate	40

Introduction

EPA Standards

The following manual will instruct you in the unpacking, assembly, operation, calibration, and use of this product. For information on air sampling principles, procedures and requirements and to ensure compliance with government regulations, refer to Title 40 of the Code of Federal Regulations **Appendix B to Part 50**, **Reference Method for Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method)** or **Appendix G to Part 50**, **Reference Method for the Determination of Lead in Suspended Particulate Matter Collected from Ambient Air**. For additional information, contact the local Environmental Protection Agency office serving your area.

Safety Precautions

Before using Tisch Environmental products, always review the corresponding operations manuals and take all necessary safety precautions, especially when working with electricity.

Important Safety Instructions

Read and understand all instructions. Do not dispose of these instructions. Failure to follow all instruction listed in this manual may result in electric shock, fire, and/or personal injury. When using an electrical device, basic precautions must always be followed, including the precautions listed in the safety section of this manual. Never operate this unit in the presence of flammable materials or vapors are present as electrical devices may produce arcs or sparks that can cause fire or explosions. Always disconnect power supply before attempting to service or remove any components. Never immerse electrical parts in water or any other liquid. Always avoid body contact with grounded surfaces when plugging or unplugging this device is wet or dangerous conditions.

Electrical Installation

Installation must be carried out by specialized personal only, and must adhere to all local safety rules. This unit can be used for different power supply versions; before connecting this unit to the power line, always check if the voltage shown on the serial number tag corresponds to the one on your power supply. This product does use grounded plugs and wires. Grounding provides the path of least resistance for electrical currents, thereby reducing the risk of electric shock to users. This system is equipped with electrical cords with internal ground wires and a grounding plug. The plug must be plugged into a matching outlet that is properly installed and grounded in accordance with all local codes and ordinances. Do not modify the plug provided. If plug will not fit outlet, have the proper corresponding outlet installed by a professional, qualified electrician.

Do Not Abuse Cords

In the event that any electrical component of this system needs to be transported, **DO NOT** carry the unit by its power cord or unplug the unit by yanking the cord from the outlet. **Pull the plugs, not the cords**, to reduce risk of damage to unit. Keep all cords away from heat, oil, sharp objects, and moving parts.

Extension Cords

It is always advisable to use the shortest extension cord possible. Grounded units require a three-wire extension cord. As the distance from the supply outlet increases, you must use a heavier gauge extension cord. Using extension cords with inadequately sized wires results in serious changes in voltage, resulting in a loss of power and possible damage to equipment. It is recommended to only use 10-gauge extension cords for this product. Never use cords that exceed one hundred feet. Outdoor extension cords must be marked with the suffix "W-A" (or "W" in Canada)to indicate that it is suitable for outdoor usage. Always ensure that extension cords are properly wired and in good electrical condition. Always replace damaged extension cords immediately, or seek repair from qualified electricians before further use. Remember to protect extension cords from sharp objects, excessive heat, and damp or wet conditions.

Product Description

Introduction

The High Volume Air Sampler (also known as a **lead sampler**) is the recommended instrument for sampling large volumes of air for the collection of TSP (Total Suspended Particulate). The TE-5170 TSP MFC sampler consists of a TE-5001 Anodized Aluminum Shelter, TE-5005 Aluminum Blower Motor Assembly, TE-5004 8"x10" Stainless Steel Filter Holder with probe hole, TE-5009 Continuous flow/pressure recorder, TE-300-310 Mass Flow Controller, TE-5007 Mechanical Timer, and TE-5012 Elapsed Time Indicator.

Applications

- Ambient air monitoring to determine mass concentration of suspended particulate levels relative to air quality standards. This result is reported in micrograms per cubic meter.
- Impact of a specific source on ambient levels of suspended particulates by incorporating a "wind-direction-activation" modification which permits the sampler to operate only when conditions are such that a source-receptor relationship exists.

Calibration Requirements

TE-5170 TSP MFC High Volume Air Sampler should be calibrated:

- Upon installation.
- After routine maintenance or exchange of vacuum motor or motor brushes.
- Once every quarter (three months).
- After 360 sampling hours.

Calibration Kit

The TE-5028 is the preferred product used to calibrate the TE-5170 MFC TSP High Volume Air Sampler. It simulates change in the resistance by rotating the knob on the top of the calibrator. The infinite resolution lets the technician select the desired flow resistance. The TE-5028 calibration kit includes: carrying case, 30" slack tube water manometer, adapter plate, tubing, and TE-5028A orifice with flow calibration certificate. Optional electronic manometer is available by ordering TE-5028E.

Each TE-5028A Orifice Transfer Standard is individually calibrated on a primary standard positive displacement device which is directly traceable to NIST.

** It is recommended by the EPA that each calibrator should be re-calibrated annually. (1998 Code of Federal Regulations Parts 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.5 page 29.)

Parts

1. Shelter Box - 48" x 20" x 20" 74 lbs

TSP MFC SAMPLER TE-5170 110volts, 60hz TE-5170X 220volts, 50hz TE-5170XZ 220volts, 60hz

8" x 10" TSP Stainless Steel Filter Holder with probe hole TE-5004

7 Day Mechanical Timer *TE-5007, 110volts, 60hz TE-5007X, 220volts,50hz TE-5007XZ, 220volts,60hz*

Mass Flow Controller *TE-300-310, 110volts, 60hz TE-300-310X, 220volts 50/60hz*

Elapsed Time Indicator TE-5012 110volt, 60hz TE-5012X 220volts, 50hz TE-5012XZ 220volts, 60hz

Blower Motor Assembly with tubing *TE-5005 110volts, 60hz* TE-5005X, 220volts, 50-60hz

24 Hour Chart Recorder TE-5009 110volts, 60hz TE-5009X 220volts,50hz TE-5009XZ 220volts,60hz

Filter Holder Gasket TE-5005-9

Envelope box of charts and manual TE-106

2. Lid Box - 19" x 14" x 14" 9 lbs

Gabled Roof TE-5001-10

*** Save the shipping containers and packing material for future use.

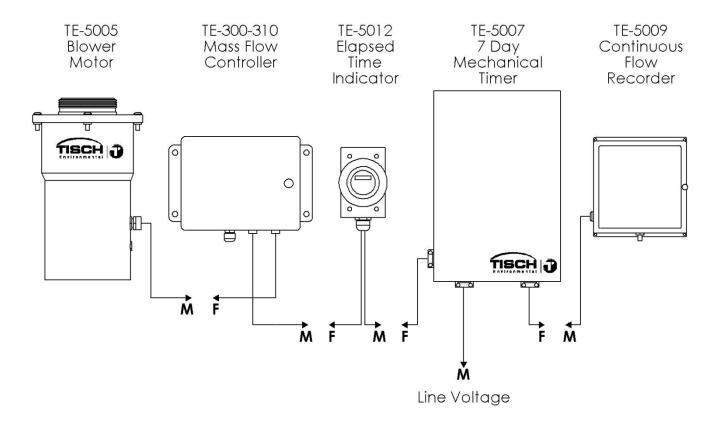
Assembly

- 1. Open shelter box and remove Anodized Aluminum Shelter.
- 2. Enclosed in the 13" x 10" x 9" box on bottom of shelter is the TE-5005 Blower Motor Assembly. Enclosed in the 13" x 10" x 9" box inside of shelter is the TE-5004 Filter Holder with TE-5005-9 gasket. Remove from boxes.
- 3. Open lid box and remove 5001-10 Roof (for roof assembly see page 13).
- 4. Screw TE-5004 Filter Holder onto TE-5005 Blower Motor Assembly (tubing, power cord, and hole in filter holder collar to the right) make sure TE-5005-9 gasket is in place.
- 5. Lower Filter Holder and Blower Motor down through top support pan on shelter. Insert Flow Controller probe into filter holder collar. Before tightening **make sure** probe slot is turned so air coming into filter holder goes through it. Connect tubing from pressure tap of blower motor to TE-5009 Flow Recorder.

Gabled Roof Assembly

The following steps are accompanied by pictures to aid your understanding of gabled roof assembly. **Please be aware that the pictures are standardized and may not exactly match the equipment that you are using.** The gabled roof is used on several products and the assembly procedure is the same.

Lid Hardware 5 pcs 10-24 x 1/2 pan head screws 5 pcs 10-24 stop nuts 1 pc 6-32 x 3/8 pan head screw 1 pc 6-32 hex nut 1 pc 20" chain with "S" hook 1 pc TE-5001-10-9 roof back catch 1 pc TE-5001-10-10 front catch 1 pc TE-5001-10-11 rear lid hasp	
Step 1 Secure TE-5001-10-10 front catch to the shelter using 2 10-24 pan head screws with stop nuts. *Do not tighten completely, this may need to be adjusted after final assembly*	
Secure TE-5001-10-9 roof back catch to the back of shelter using #6-32 pan head screw with stop nut.	
Step 3Secure TE-5001-10-11 rear lid hasp insidethe lid with the slot angled up using (2)#10-24 pan head screws with stop nuts.*Do not tighten completely, this may need tobe adjusted after final assembly*	



	Environmental 🛛 🍼
Step 4 Remove (4) #10-24 x ½" pan head screws from the rear of the shelter, attach the lid to the shelter by placing the lid hinge plates on the "OUTSIDE" of the shelter, line the hinges up with the (4) threaded holes in the back of the shelter. Use the (4) #10-24X ½" pan head screws that were removed preciously to attach the lid hinges to the shelter. <i>*Tighten completely*</i>	
Step 5 Adjust the front and rears catch to be sure that the lid slots lowers over it when closing. Tighten the roof back hasp and front catch completely.	
Step 6 Attach the chain and "S" hook assembly to the side of the shelter with a #6-32 x 3/8" pan head screw.	
Step 7 The Lid can now be secured in an open or closed position with the "S" hook.	

Electrical Set-Up

TE-5170 Electrical Set-Up

Note: Standard 3-prong plug may require adapter for use in global installations. Please consult your local electrical standards.

- 1. Connect the TE-5005 Blower Motor plug to the TE-300-310 Mass Flow Controller socket.
- 2. Connect the Mass Flow Controller plug to the TE-5012 Elapsed Time Indicator socket side.
- 3. Connect the plug side of the ETI cord set into the TE-5007 7-Day Mechanical Timer timed socket cord on the left side of timer.

- 4. The other socket cord set on timer (on the right) is hot all the time and is connected to the TE-5009 Continuous Flow Recorder plug.
- 5. The plug cord set of timer connects to line voltage.

Operations

Visit, <u>www-tisch-env.com/calibration-worksheets</u>, to download calibration worksheets. The calibration worksheets allow the user to input the data and automatically make the calculations. The manual calculation method is described in the following sections for your reference, however, it is highly recommended to download the calibration worksheets.

Calibration Procedure

The following is a step by step process of the calibration of a **TE-5170 Mass Flow Controlled Total Suspended Particulate High Volume Sampling Systems.** Following these steps are example calculations determining the calibration flow rates, and resulting slope and intercept for the sampler. These instructions pertain to the samplers which have air flow controlled by electronic mass flow controllers (MFC) in conjunction with a continuous flow recorder or a manometer. This calibration differs from that of a volumetric flow controlled sampler.

The Total Suspended Particulate samplers (TSP) are also referred to as **lead samplers** as this is another use for these instruments. The instruments are also suitable for capturing large particulate and heavy metal particles. Air monitoring studies that are concerned with smaller respirable particulate will call for the use of PM-10 particulate samplers. The TSP samplers have a wide range of acceptable air flow operating limits, i.e., 1.10 to 1.70 m³/min (39 to 60 CFM). A mass flow controller will sense a decrease in air flow as particulate is collected in the filer media and increases the voltage to the blower which increases the blower speed in order to maintain the set flow rate.

The attached example calibration worksheets can be used with a **TE-5028 Variable Orifice Calibrator** which uses an adjustable or variable orifice.

One example calibration sheet is attached to this manual. To download the electronic spreadsheet, please visit www.tisch-env.com. It is highly recommended to download the electronic spreadsheet and use the spreadsheet features to complete calculations, calibration worksheets can be found by visiting www.tisch-env.com.

Proceed with the following steps to begin the calibration:

- 1. Disconnect the sampler motor from the mass flow controller and connect the motor to a stable AC power source.
- 2. Mount the calibrator orifice and top loading adapter plate to the sampler. A sampling filter is generally not used during this procedure. Tighten the top loading adapter hold down nuts securely to ensure that no air leaks are present.
- 3. Allow the sampler motor to warm up to its normal operating temperature (approximately 10-15 minutes).
- 4. Conduct a leak test by covering the hole(s) on top of the orifice and pressure tap on the orifice with your hands. Listen for a high-pitched squealing sound made by escaping air. If this sound is heard, a leak is present and the top loading adapter hold-down nuts need to be re-tightened. If the sound is lower, the leak is near one of the other gaskets in the system. Avoid running the sampler for longer than 30 seconds at a time with the orifice blocked to avoid overheating the motor. Do not perform this leak test procedure with a manometer connected to the side tap on the calibration orifice or the blower motor. Liquid from the manometer could be drawn into the system and cause motor damage.
- 5. Connect one side of a water manometer to the pressure tap on the side of the orifice with a rubber vacuum tube. Leave the opposite side of the manometer open to the atmosphere. **Note:** Both valves on the manometer have to be open for the liquid to flow freely. One side of the 'U' tube goes up the other goes down; add together for the "H₂O reading.
- 6. A manometer must be held vertically to ensure accurate readings. Tapping the backside of the continuous flow recorder will help to center the pen and provide accurate readings. When using a variable orifice (TE-5028A), five flow rates are achieved in this step by adjusting the knob on the variable orifice to five different positions and taking five different readings.
- 7. Record the ambient air temperature, the ambient barometric pressure, the sampler serial number, the orifice s/n, the orifice slope and intercept with date last certified, todays date, site location and the operators initials on the attached blank calibration sheet.

8. Disconnect the sampler motor from its power source and remove the orifice and top loading adapter plate. Re-connect the sampler motor to the electronic mass flow controller.

An example of a Lead (or TSP) Sampler Calibration Data Sheet has been attached with data filled in from a typical calibration. This includes the transfer standard orifice calibration relationship which was taken from the Orifice Calibration Worksheet that accompanies the calibrator orifice. Since this calibration is for a TSP sampler, the slope and intercept for this orifice uses **standard** flows rather than actual flows and is taken from the Qstandard section of the Orifice Calibration Worksheet. The Qactual flows are only used when calibrating a PM-10 sampler.

The five orifice manometer readings taken during the calibration have been recorded in the column on the data worksheet titled Orifice $"H_2O$. The five continuous flow recorder readings taken during the calibration have been recorded under the column titled I chart.

The orifice manometer readings need to be converted to the standard air flows they represent using the following equation:

 $Qstd = 1/m[Sqrt((H_20)(Pa/760)(298/Ta))-b]$

where:

Qstd = actual flow rate as indicated by the calibrator orifice, m³/min H₂O = orifice manometer reading during calibration, "H₂O Ta = ambient temperature during calibration, K (K = 273 + °C) 298 = standard temperature, a constant that never changes, K Pa = ambient barometric pressure during calibration, mm Hg 760 = standard barometric pressure, a constant that never changes, mm Hg m = *Qstandard slope of orifice* calibration relationship b = *Qstandard intercept of orifice* calibration relationship.

Once these standard flow rates have been determined for each of the five run points, they are recorded in the column titled Qstd, and are represented in cubic meters per minute.

The continuous flow recorder readings taken during the calibration need to be corrected to the current meteorological conditions using the following equation:

IC = I[Sqrt((Pa/760)(298/Ta))]

where:

m=

IC = continuous flow recorder readings corrected to current Ta and Pa I = continuous flow recorder readings during calibration Pa = ambient barometric pressure during calibration, mm Hg. 760 = standard barometric pressure, a constant that never changes, mm Hg Ta = ambient temperature during calibration, K (K = 273 + °C)

298 = standard temperature, a constant that never changes, K

After each of the continuous flow recorder readings have been corrected, they are recorded in the column titled IC (corrected).

Using Qstd and IC (or FLOW (corrected)) as the x and y axis respectively, a slope, intercept, and correlation coefficient can be calculated using the least squares regression method. The correlation coefficient should never be less than 0.990 after a five point calibration. A coefficient below .990 indicates a calibration that is not linear and the calibration should be performed again. If this occurs, it is most likely the result of an air leak during the calibration or high wind speed during the calibration procedure.

The equations for determining the slope (m) and intercept (b) are as follows:

$$\frac{(\sum x)(\sum y)}{\sum xy - n}$$

$$\frac{(\sum x)^2}{\sum x^2 - n} ; \quad b = \overline{y} - m\overline{x}$$

The equation for the coefficient of correlation (r) is as follows:

$$\mathbf{r} = \sum xy - \frac{(\sum x)(\sum y)}{n}$$

$$\sqrt{\left[\sum x^2 - \frac{(\sum x)^2}{n}\right] \left[\sum y^2 - \frac{(\sum y)^2}{n}\right]}$$

where: n = number of observations \sum = sum of

The acceptable operating flow range of a TSP sampler is 1.1 to $1.7 \text{ m}^3/\text{min}$ (39 to 60 CFM). Looking at the worksheet column Qstd(see page 38), the flow rates that are within this range can be identified along with the chart reading (I) that represents them. For instance if you wanted to set this sampler at 1.265 m³/min (44.67 CFM) (Make sure the mass flow controller is plugged in and a filter is in place) you would turn the Flow Adjustment screw until the continuous flow recorder read 37 on the chart. By making sure that the sampler is operating at a chart reading (or manometer reading) that is within the acceptable range, it can be assumed that valid TSP data is being collected.

Example Calculations

The following example problems use data from the attached calibration worksheet.

After all the sampling site information, calibrator information, and meteorological information have been recorded on the worksheet, standard air flows need to be determined from the orifice manometer readings taken during the calibration using the following equation:

1. Qstd = $1/m[Sqrt((H_20)(Pa/760)(298/Ta))-b]$

where:

Qstd = actual flow rate as indicated by the calibrator orifice, m^3/min H₂O = orifice manometer reading during calibration, "H₂O Ta = ambient temperature during calibration, K (K = 273 + °C) 298 = standard temperature, a constant that never changes, K Pa = ambient barometric pressure during calibration, mm Hg 760 = standard barometric pressure, a constant that never changes, mm Hg m = *Qstandard slope of orifice* calibration relationship b = *Qstandard intercept of orifice* calibration relationship.

Note that the ambient temperature is needed in degrees Kelvin to satisfy the Qstd equation. Also, the barometric pressure needs to be reported in millimeters of mercury. In our case the two following conversions may be needed:

2. degrees Kelvin = [5/9 (degrees Fahrenheit - 32)] + 273

3. millimeters of mercury = 25.4(inches of H₂0/13.6)

Inserting the numbers from the calibration worksheet run point number one we get:

-1/1.47574[5414((7.25)(745)750)(250/255)) - (00015)]	4.	Qstd = 1/1.47574[Sqrt((7.25)(749/760)(298/293)) - (00613)]
--	----	--

- 6. Qstd = .6776261[Sqrt(7.2669947) + .00613]
- 7. Qstd = .6776261[2.6957363 + .00613]
- 8. Qstd = .6776261[2.7018663]
- 9. Qstd = 1.831

Throughout these examples you may find that your results may vary some from those arrived here. This may be due to different calculators carrying numbers to different decimal points. The variations are usually slight and should not be a point of concern.

With the Qstd determined, the corrected chart reading (IC) for this run point needs to be calculated using the following equation:

10. IC = I[Sqrt((Pa/760)(298/Ta))]

where:IC = continuous flow recorder readings corrected to standard
I = continuous flow recorder readings during calibration
Pa = ambient barometric pressure during calibration, mm Hg.
760 = standard barometric pressure, mm Hg
Ta = ambient temperature during calibration, K (K = 273 + °C)
298 = standard temperature, K.

Inserting the data from run point one on the calibration worksheet we get:

11.	IC = 52[Sqrt(749	/760)(298/293)]

12. IC = 52[Sqrt(1.0023441)]

13. IC = 52[1.0011713]

14. IC = 52.06

This procedure should be completed for all five run points. EPA guidelines state that at least three of the five Qstd flow rates during the calibration be within or nearly within the acceptable operating limits of 1.10 to 1.70 m³/min (39 to 60 CFM). If this condition is not met, the instrument should be recalibrated. (1998 Code of Federal Regulations Parts 50 to 51 Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17 page 30.)

Using Qstd as our x-axis, and IC as our y-axis, a slope, intercept, and correlation coefficient can be determined using the least squares regression method.

The equations for determining the slope (m) and intercept (b) are as follows:

15.

$$m = \frac{\left[\sum xy - \left(\frac{(\sum x)(\sum y)}{n}\right)\right]}{\sum x^2 - \frac{(\sum x)^2}{n}} \qquad b = \overline{y} - m\overline{x}$$

where: n = number of observations $\overline{y} = \sum y/n; \quad x = \sum x/n$ $\sum = sum of.$

The equation for the coefficient of correlation (r) is as follows:

16.
$$r = \sum xy - \frac{(\sum x)(\sum y)}{n}$$

 $\sqrt{\left[\sum x^2 - \frac{(\sum x)^2}{n}\right] \left[\sum y^2 - \frac{(\sum y)^2}{n}\right]}$

where:
$$n = number of observations$$

 $\sum = sum of.$

Before these can be determined, some preliminary algebra is necessary. $\sum x$, $\sum y$, $\sum x^2$, $\sum xy$, $(\sum x)^2$, $(\sum y)^2$, n, y, and x need to be determined.

17. $\Sigma x = 1.831 + 1.631 + 1.452 + 1.265 + 1.119 = 7.298$

18.
$$\Sigma y = 52.07 + 47.06 + 42.06 + 37.05 + 33.05 = 211.29$$

- 19. $\Sigma x^2 = (1.831)^2 + (1.631)^2 + (1.452)^2 + (1.265)^2 + (1.119)^2 = 10.973412$
- 20. $\Sigma y^2 = (52.07)^2 + (47.06)^2 + (42.06)^2 + (37.05)^2 + (33.05)^2 = 9159.9771$
- 21. $\Sigma xy = (1.831)(52.07) + (1.631)(47.06) + (1.452)(42.06) + (1.265)(37.05) + (1.265)(37$

(1.119)(33.05) = 317.01735

22.
$$n = 5$$

$$23. \quad \overline{\mathbf{x}} = \Sigma \mathbf{x}/\mathbf{n} = 1.4596$$

- 24. $\overline{y} = \Sigma y/n = 42.258$
- 25. $(\Sigma x)^2 = (7.298)^2 = 53.260804$
- 26. $(\Sigma y)^2 = (211.29)^2 = 44643.464$

Inserting the numbers:

27.

$$slope = \frac{317.01735 - \frac{(7.298)(211.29)}{5}}{10.973412 - \frac{53.260804}{5}}$$

28.

$$slope = \frac{317.01735 - \frac{1541.9944}{5}}{10.973412 - \frac{53.260804}{5}}$$

29.

 $slope = \frac{317.01735 - 308.39888}{10.973412 - 10.65216}$

30.

$$slope = \frac{8.61847}{0.321252}$$

31. *slope* = 26.827755

32.	intercept =	42.258 - (26.827755)(1.4596)
33.	intercept =	42.258 - 39.157791
34.	intercept =	3.100209

		(7.298)(211.29)
35. correlation coeff. =	317.01735 -	5
	$\sqrt{10.973412 - \frac{53.26080}{5}}$	$\frac{4}{2} \left[9159.9771 - \frac{44643.464}{5} \right]$
		(1541.9944)
36. correlation coeff. =	317.01735 -	5
١	[(10.973412-10.65216)]	[(9159.977 - 8928.6928)]

37. correlation coeff. =
$$\frac{(317.01735 - 308.39888)}{\sqrt{[(10.973412 - 10.65216)][(9159.977 - 8928.6928)]}}$$

38. correlation coeff. = $\frac{8.61847}{\sqrt{(0.321252)(231.2842)}}$

TE-5170 TSP MFC

39. correlation coeff. =	$\frac{8.61847}{\sqrt{74.300511}}$
40. correlation coeff. =	$\frac{8.61847}{8.6197744}$
41. correlation coeff. =	.9998

A calibration that has a correlation coefficient of less than .990 is not considered linear and should be re-calibrated. As you can see from both worksheets we have 3 Qstd numbers that are in the TSP range (1.1 - 1.7) and the correlation coefficient. is > .990, thus a good calibration.

Total Volume

To figure out the total volume of air that flowed through the sampler during your sampling run take a set-up reading (when you set the sampler up manually turn it on and take a continuous flow recorder reading; in our example it should be 38) and a pick-up reading (after the sample has been taken again manually turn sampler on and take a continuous recorder reading; for our example let's say it read 34). Take 38 + 34 = 72 72/2 = 36 so the continuous recorder reading you would use is 36. Put that into the formula (on bottom of worksheet):

1/m((I)[Sqrt(298/Tav)(Pav/760)]- b)

- m = sampler slope
- b = sampler intercept
- I = average chart response
- Tav = daily average temperature
- Pav = daily average pressure
- Sqrt = square root

Example:

		1/26.8212((36)[Sqrt(298/294)(753/760)]-(+3.1112))
m ³ /min	=	.0372839 ((36)[Sqrt(1.0136054)(0.9907894)] -3.1112)
m ³ /min	=	.0372839 ((36)[Sqrt(1.0042694)] -3.1112)
m ³ /min	=	.0372839 ((36)[1.0021324)] -3.1112)
m ³ /min	=	.0372839 ((36.076766) -3.1112)
m ³ /min	=	.0372839 (32.965566)
m ³ /min	=	1.2290848
ft ³ /min	=	1.2290848 x 35.31 = 43.398984
Total ft ³	=	$ft^3/min \ge 60 \ge 100$ k hours that sampler ran

Let's say our sampler ran 24 hours (end ETI reading - start ETI reading)

** Make sure ETI is in hours otherwise convert to hours **

Total ft^3 = 43.398984 x 60 x 24 = 62,494.536 ft^3 Total m³ = 1.2290848 x 60 x 24 = 1769.8821 m³

Sampler Operation

- 1. After performing calibration procedure, remove filter holder frame by loosening the four wing nuts allowing the brass bolts and washers to swing down out of the way. Shift frame to one side and remove.
- 2. Carefully center a new filter, rougher side up, on the supporting screen. Properly align the filter on the screen so that when the frame is in position the gasket will form an airtight seal on the outer edges of the filter.
- 3. Secure the filter with the frame, brass bolts, and washers with sufficient pressure to avoid air leakage at the edges (make sure that the plastic washers are on top of the frame).
- 4. Wipe any dirt accumulation from around the filter holder with a clean cloth.
- 5. Close shelter lid carefully and secure with the "S" hook.
- 6. Make sure all cords are plugged into their appropriate receptacle sockets and the rubber tubing between the blower motor pressure tap and the TE-5009 continuous flow recorder is connected (be careful not to pinch tubing when closing door).
- 7. Prepare TE-5009 continuous flow recorder as follows:
 - a. Clean any excess ink and moisture on the inside of recorder by wiping with a clean cloth.
 - b. Depress pen arm lifter to raise pen point and carefully insert a fresh chart.
 - c. Carefully align the tab of the chart to the drive hub of the recorder and press gently with thumb to lower chart center onto hub. Make sure chart is placed under the chart guide clip and the time index clip so it will rotate freely without binding. Set time by rotating the drive hub clock-wise until the correct time on chart is aligned with time index pointer.
 - d. Make sure the TE-160 pen point rests on the chart with sufficient pressure to make a visible trace.

- 8. Prepare the Timer as instructed below.
- 9. Manually trip timer switch on to determine if sampler is operating properly and the recorder is inking correctly.
- 10. Manually trip timer switch off. If the timer is set correctly you are ready to sample.
- 11. At the end of the sampling period, remove the frame to expose the filter. Carefully remove the exposed filter from the supporting screen by holding it gently at the ends (not at the corners). Fold the filter lengthwise so that sample touches sample.
- 12. It is always a good idea to contact the lab you are dealing with to see how they may suggest you collect the filter and any other information that they may need.

Timer Preparation

TE-5007 7-Day Mechanical Timer

- 1. To set the "START" time, attach a (bright) "ON" tripper to the dial face on the desired "START" time. Tighten tripper screw securely.
- 2. To set the "STOP" time, attach a (dark) "OFF" tripper to the dial face on the desired "STOP" time. Tighten tripper screw securely.
- 3. To set current time and day, grasp dial and rotate **clockwise only** until correct time and day appear at time pointer.

Troubleshooting

*note: this is a general trouble shooting guide, not all problem may apply to every sampler *

<u>Problem</u>	Solution			
Brush Motor Won't Turn On	Solution-Check Motor brushes(Change every 500 hours)-Check Motor(Should be replaced after 2 brush changes about 1500 hours)-Check power supply-Ensure that all electrical connections are secure-Make sure timer is on-Make sure flow controller(if applicable) is adjusted properly-Check for loose or damaged wires			
Brushless Motor Won't Turn On	 -Ensure that all electrical connections are secure -Make sure flow controller (if applicable) is adjusted properly -Check power supply -Make sure timer is on -Check for loose or damaged wires 			
Mechanical timer not working	 -Make sure trippers are set properly -Make sure that trippers are not pressed against switch at start up, the timer need to rotate a few degrees before the trippers hit the switch -Check for loose or damages wires -Check power supply -Check electrical hook up diagram to ensure correct installation -Check Motor 			
Digital timer not working	-Check timer settings -Make sure current date and time are correct -Make sure power cords are properly connected -Check fuse on main PC board (F3) -Check Power Supply -Check Motor			
Mass Flow Controller not working	-Make sure timer is on -Check Motor/Motor brushes -Make sure 8 amp breaker is not popped -Make sure flow probe is installed correctly -Check all electrical connections -Check power supply			

Environmental
-Check Power Supply
-Check electrical connections
-Check Power Supply
-Check Electrical Connections
-Check Motor
-Check for leaks
-Check filter media placement
-Ensure only one piece of filter paper is installed
-Check Flow Controller
-Check flow valve(TE-1000PUF samplers only)
-Ensure proper voltage is being supplied
-Check calibration
-Replace pen point
-Make sure pen point is touching chart
-Make sure pen point is on "0"
-Make sure tubing from motor is in place
-Check Power Supply
-Check motor
-Make sure all gaskets are in place
-Make sure all connections are secure
-Makes sure connections are not over tightened
-Check for damaged components: Filter holder screen,
gaskets, motor flanges

Maintenance and Care

A regular maintenance schedule will allow a monitoring network to operate for longer periods of time without system failure. Adjustments in routine maintenance frequency may be necessary due to the operational demands on instruments. It is recommended that the following cleaning and maintenance activities be observed until a stable operating history of the sampler has been established.

TE-5170 MFC TSP Sampler:

- 1. Make sure all gaskets (including TE-5005-4 motor cushion) are in good shape and that they seal properly.
- 2. The power cords should be checked for good connections and for cracks (replace if necessary).

CAUTION: Do not allow power cord or outlets to be immersed in water!

- 3. Inspect the filter screen and remove any foreign deposits.
- 4. Inspect the filter holder frame gasket each sample period and make sure of airtight seal.
- 5. Check or replace 110v or 220v motor brushes every 400 to 500 running hours.
- 6. After replacing motor brushes two times, a new motor must be used.
- 7. Make sure elapsed time indicator is working properly by applying power and observing.
- 8. Make sure continuous flow recorder pen is still inking each time, tubing has no crimps or cracks, and that the door is sealed completely.

Motor Brush Replacement

110 volt	(Brush part #TE-33384)
220 volt	(Brush part #TE-33378)

CAUTION: Unplug the unit from any line voltage sources before performing any service on blower motor assembly or any electrical device on this system.

The following steps are accompanied by pictures to aid your understanding of motor brush replacement procedures. **Please be aware that the pictures are standardized and may not match the equipment that you are using.** Motor brush removal and replacement does not change based on motor or brush type, so do not be confused if your equipment differs from what is pictured.

- 1. Remove the blower motor from the filter holder. Place on work bench. Remove the flange by removing the four bolts. This will expose the gasket and the motor.
- 2. Turn assembly on side, loosen the cord retainer and then push cord into housing and at the same time let motor slide out exposing the brushes.
- 3. Looking down at motor. There are 2 brushes, one on each side. Carefully pry the brass quick disconnect tabs (the tabs are pushed into end of brush) away from the expended brushes and toward the armature. Try to pry the tabs as far as you can without damaging the armature.
- 4. With a screwdriver loosen and remove brush holder clamps and release brushes. Carefully, pull quick disconnect tabs from expended brushes.

5. Carefully slide quick disconnect tabs into tab slot of new brush.

6. Push brush carbon against armature until brush housing falls into brush slot on motor.

- 7. Put brush holder clamps back onto brushes.
- 8. Make sure quick disconnect tabs are firmly seated into tab slot. Check field wires for good connections.

- 9. Assemble motor after brush replacement by placing housing over and down on the motor (at same time pull power cord out of housing), being careful not to pinch any motor wires beneath the motor spacer ring.
- 10. Secure power cord with the cord retainer cap.
- 11. Replace blower motor flange on top of motor making sure to center gasket. Assemble together with filter holder. Lower filter holder and blower motor down through top support pan on shelter.

****IMPORTANT**** To enhance motor life:

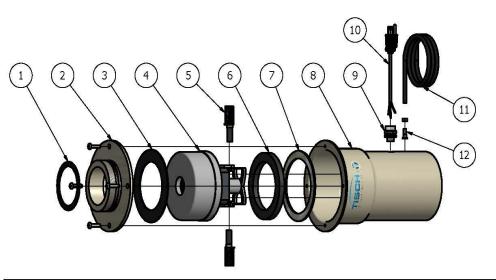
- Change brushes before brush shunt touches armature.
- Seat new brushes by applying 50% voltage for 10 to 15 minutes, the TE-5075 brush break in device allows for the 50% voltage.

TE-116311 110v MFC Motor

TE-33384(green) 110v MFC Motor Brush

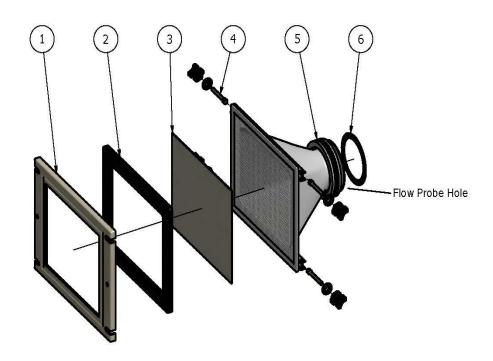
TE-116312 220v MFC Motor

TE-33378(brown) 220v MFC Motor Brush


Warranty

Tisch Environmental, Inc. warrants instruments of its manufacture to be free of defects in material and workmanship for one year from the date of shipment to the purchaser. Its liability is limited to servicing or replacing any defective part of any instrument returned to the factory by the original purchaser. All service traceable to defects in original material or workmanship is considered warranty service and is performed free of charge. The expense of warranty shipping charges to and from our factory will be borne by Tisch Environmental. Service performed to rectify an instrument malfunction caused by abuse, acts of god or neglect, and service performed after the one-year warranty period will be charged to the customer at the current prices for labor, parts, and transportation. Brush-type and brushless type motors will carry a warranty as far as the original manufacture will pass through its warranty to Tisch Environmental, Inc. The right is reserved to make changes in construction, design specifications, and prices without prior notice.

Assembly Drawings


TE-5005 Blower Motor Assembly

	TE-5005 Brush Type Aluminum Blower Motor Assembly							
ITEM	QTY	PART NUMBER	DESCRIPTION					
1	1	TE-5005-9	Filter Holder Gasket (between Filter Holder and Blower Motor)					
2	1	TE-5005-1	Blower Motor Flange					
3	1	TE-5005-2	Flange Gasket					
4	1	TE-116311	Motor for 110V MFC Blower					
		TE-116312	Motor for 220V MFC Blower					
5	2	TE-33384	Motor Brushes for 110V Motor MFC					
		TE-33378	Motor Brushes for 220V Motor MFC					
6	1	TE-5005-4	Motor Cushion					
7	1	TE-5005-5	Motor Spacer Ring					
8	1	TE-5005-3	Aluminum Blower Motor Housing					
9	1	TE-5005-7	Cord Retainer w/ Nut					
10	1	TE-5010-4	Power Cord					
11	1	TE-5005-6	Tubing 3 ft. Piece					
12	1	TE-5005-8	Pressure Tap w/ Nut					

TE-5004 Filter Holder Assembly

	TE-5004 Filter Holder Assembly						
ITEM	QTY	PART NUMBER	DESCRIPTION				
1	1	TE-3000-2	Hold Down Frame				
2	1	TE-5018	8" x 10" Gasket				
3	1	N/A	Filter Paper				
4	4	TE-5003-9	Plastic Thumb Nut, Brass Bolt, Washer, and Rivet				
5	5 1 TE-5028-9 Aluminum Threaded Ring						
6	1	TE-5005-9	Filter Holder Gasket (Between Filter Holder and Blower Motor)				

Calibration Worksheet

ocation: Cleves, Ohio	Site ID: 145	Date: 31-Oct-14
Sampler: E-5170 MFC	Serial No: 367	Tech: Jim Tisch

Site Cor	nditions
Barometric Pressure (in Hg): 29.50	Corrected Pressure (mm Hg): 749
Temperature (deg F): 68	Temperature (deg K): 293
Average Press. (in Hg): 29.65	Corrected Average (mm Hg): 753
Average Temp. (deg F): 70	Average Temp. (deg K): 294

Calibration Orifice					
Make: Tisch	Qstd Slope: 1.47574				
Model: TE-5028A	Qstd Intercept: -0.00613				
Serial#: 2978	Date Certified: 24-Oct-14				

Calibration Information								
Plate or H2O Qstd I IC								
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression			
1	7.25	1.831	52.0	52.07	Slope: 26.8212			
2	5.75	1.631	47.0	47.06	Intercept: 3.1112			
3	4.55	1.452	42.0	42.06	Corr. Coeff: 0, 9998			
4	3.45	1.265	37.0	37.05				
5	2.70	1.119	33.0	33.05	# of Observations: 5			

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((l)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature

Pav = daily average pressure

Average I (chart): 36.0

Average Flow Calculation m3/min 1.228929308 Average Flow Calculation in CFM 43.39349387 Sample Time (Hrs): 24.0 Total Flow in m3/min 1769.658204 **Total Flow in CFM** 62486.63118

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

Calibrator Certificate

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-50							
Date - Oc Operator		Rootsmeter Orifice I.I		333620 2978	Ta (K) - Pa (mm) -	296 755.65	
PLATE OR VDC #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)	
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.1880 0.9230 0.8380 0.7790 0.5860	4.5 7.5 9.0 10.5 18.0	1.50 2.50 3.00 3.50 6.00	

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9950 0.9910 0.9891 0.9871 0.9771	0.8375 1.0737 1.1803 1.2671 1.6674	1.2254 1.5819 1.7329 1.8718 2.4507		0.9940 0.9901 0.9881 0.9861 0.9761	0.8367 1.0727 1.1791 1.2659 1.6657	0.7665 0.9896 1.0840 1.1709 1.5331
Qstd slo intercep coeffici	t (b) =	1.47574 -0.00613 0.99985	1 8 1	Qa slope intercept coefficie	t (b) =	0.92408 -0.00383 0.99985
y axis =	SQRT [H20 ()	Pa/760) (298/1	[a)]	y axis =	SQRT [H2O (Ta/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$