Air Quality

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative ForTung Lo Hang	Site ID:	AM1	Date:	06-Jul-2023
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
---	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

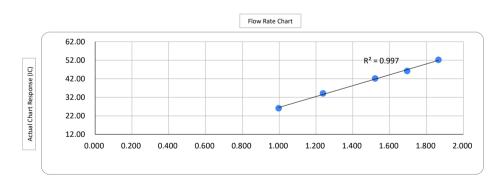
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.60	1.865	52.0	52.18
13	10.20	1.695	46.0	46.16
10	8.00	1.521	42.0	42.14
7	5.00	1.238	34.0	34.12
5	3.00	0.997	26.0	26.09

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	29.3019	b=	-2.7348	Corr. Coeff=	0.9985
111-	25.5015	D-	2.7340	COIT. COCII-	0.5505

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date:

06-Jul-2023

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative For Heung Yuen Wai	Site ID:	AM2	Date:	06-Jul-2023
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
--	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

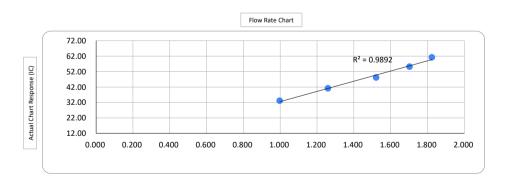
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.00	1.824	61.0	61.21
13	10.30	1.702	55.0	55.19
10	8.00	1.521	48.0	48.16
7	5.20	1.259	41.0	41.14
5	3.00	0.997	33.0	33.11

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	32.9874	b= -0.4203	Corr. Coeff=	0.9946

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date: 06-Jul-2023

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative For Wo Keng Shan Tsuen	Site ID:	AM3	Date:	06-Jul-2023
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
--	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

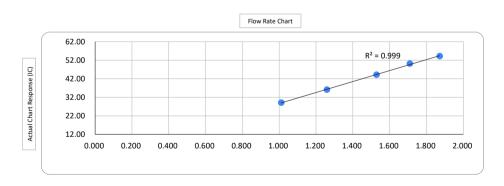
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.70	1.872	54.0	54.18
13	10.40	1.710	50.0	50.17
10	8.10	1.529	44.0	44.15
7	5.20	1.259	36.0	36.12
5	3.10	1.011	29.0	29.10

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	29.5749	b= -0.9086	Corr. Coeff=	0.9995

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date:

06-Jul-2023

Website www acuitytk con

Unit E, 12/F, Ford Glory Plaza
Not. 37-39 Wing Hong Street,
Cheung Sha Wan, Kowloon

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

0Z4545

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No. Our Report Refrence No.

RPT-22-HVS-0026

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification	Date		Time			Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00120	51	10251	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00102	34	6444	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00111	44	8193	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00122	55	9927	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00112	63	11340	R222044/3	70
			10.54%		0.00114			-	

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

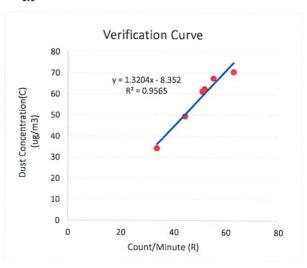
1.1

By Linear Regression of y on x:

slope, mh= 1.3204

intercept,ch= -8.3520

*Correlation Coefficient,R= 0.9780


Verification Test Result: Strong Correlation, Results were accepted.

 $\mbox{*}$ If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Technical Manager

Date: 05-12-2022

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.:

Sibata LD-5R

Unit-under-Test Serial No.:

882106

Our Report Refrence No.:

RPT-22-HVS-0027

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification	Date	Time			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00123	50	9983	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00092	37	7146	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00103	48	8870	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00108	62	11183	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00110	57	10260	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00108	65	11760	R222044/3	70
					0.00107				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

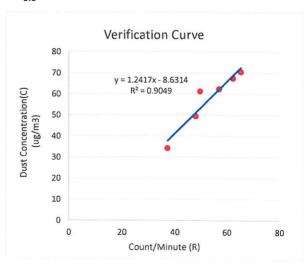
By Linear Regression of y on x:

slope, mh= 1.2417

intercept,ch= -8.6314

*Correlation Coefficient,R=

0.9513


Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

D 1 : 1)(

Date: 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

4-Dec-22 to

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

882110

Our Report Refrence No.

RPT-22-HVS-0025

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equi	Standard Equipment Information					
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator			
Standard Equipment Model No.		TE-5170X	TE-5025A			
Equipment serial no.	MFC	1106	3465			
Last Calibration Date		1-Dec-22	28-Jun-22			
Next Calibration Date		31-Jan-23	27-Jun-23			

Verification	Date	Time			K-Hactor	K-Factor Counts/ Minute (R)		TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	Counts (TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00101	61	12194	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00089	38	7337	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00108	46	8439	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00110	61	11003	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00112	56	10080	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00104				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.0

By Linear Regression of y on x:

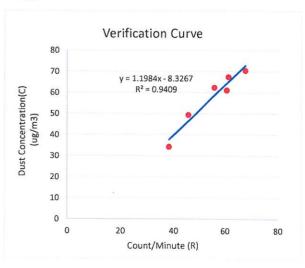
slope, mh=

1.1984

intercept,ch=

-8.3267

*Correlation Coefficient,R=


0.9700

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Date: _ 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

4-Dec-22

Verification Test Date:

3-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

942532

Our Report Refrence No.

RPT-22-HVS-0024

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information					
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator		
Standard Equipment Model No.		TE-5170X	TE-5025A		
Equipment serial no.	MFC	1106	3465		
Last Calibration Date		1-Dec-22	28-Jun-22		
Next Calibration Date		31-Jan-23	27-Jun-23		

Verification	Date	Time			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis (TC)		ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00111	55	11122	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00093	37	7082	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00110	45	8316	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00113	60	10704	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00108				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

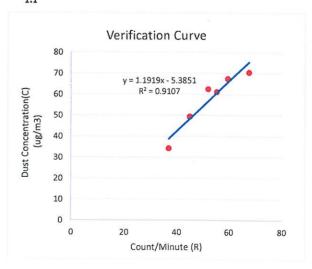
By Linear Regression of y on x:

slope, mh=

1.1919

intercept,ch=

-5.3851


*Correlation Coefficient,R=

0.9543

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Date: 05-12-2022

RECALIBRATION DUE DATE:

June 19, 2024

Certificate of Calibration

Calibration Certification Information

Cal. Date:

June 19, 2023

Rootsmeter S/N: 438320

Ta: 294
Pa: 754.9

°K

Operator:

Jim Tisch

p.

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 4166

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4500	3.2	2.0
2	3	4	1	1.0260	6.4	4.00
3	5	6	1	0.9170	8.0	5.00
4	7	8	1	0.8770	8.8	5.50
5	9	10	1	0.7240	12.8	8.00

		Data Tabula	ition		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0025	0.6914	1.4190	0.9958	0.6867	0.8826
0.9983	0.9730	2.0068	0.9915	0.9664	1.2481
0.9961	1.0863	2.2436	0.9894	1.0790	1.3955
0.9951	1.1346	2.3532	0.9883	1.1270	1.4636
0.9897	1.3670	2.8380	0.9830	1.3578	1.7651
	m=	2.10188		m=	1.31616
QSTD[b=	-0.03580	QA	b=	-0.02227
	r=	0.99998		r=	0.99998

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime		Va/ΔTime
	For subsequent flow rat	And in case of the last of the	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$		1/m((\sqrt{\Delta H(Ta/Pa)})-b

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	- Oi
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Noise

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13661-E0)

Microphone:

ACO 7052 (Serial No.:68914)

Preamplifier:

NTi Audio MA220 (M2211) (Serial No.:6282)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Address:

Unit E, 12/F., Ford Glory Plaza,

Nos. 37-39 Wing Hong Street,

Cheung Sha Wan, Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 20 August 2022

Date of calibration: 22 August 2022

Date of NEXT calibration: 21 August 2023

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 22 August 2022

Certificate No.: APJ22-071-CC001

MR TESTING LABORATION (A+A) *L

Page 1 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

Calibration Precaution: 1.

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

23.4 °C

Air Pressure:

1005 hPa

Relative Humidity:

68.5 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV220061

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. \	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	93.8	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		93.8	Ref
30-130	30-130 dBA SPL	SPL	Fast	104	1000	103.8	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	93.8	Ref
30-130	UDA SEL	Slow	94	1000	93.8	±0.3	

Certificate No.: APJ22-071-CC001

Page 2 of 4

Homepage: http://www.aa-lab.com

Frequency Response

Linear Response

Sett	Setting of Unit-under-test (UUT)			Appl	Applied value		IEC 61672 Class 1
Range, dB	Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB	
					31.5	93.9	±2.0
					63	94.0	±1.5
×					125	93.9	±1.5
					250	93.8	±1.4
30-130	dB	SPL	Fast	94	500	93.8	±1.4
					1000	93.8	Ref
					2000	93.4	±1.6
					4000	93.0	±1.6
					8000	92.2	+2.1; -3.1

A-weighting

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.6	-39.4 ±2.0
					63	67.7	-26.2 ±1.5
					125	77.8	-16.1 ±1.5
					250	85.2	-8.6 ±1.4
30-130	dBA	SPL	Fast	94	500	90.6	-3.2 ±1.4
					1000	93.8	Ref
					2000	94.6	+1.2 ±1.6
					4000	94.0	$+1.0\pm1.6$
					8000	91.2	-1.1 +2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	90.9	-3.0 ±2.0
					63	93.1	-0.8 ± 1.5
					125	93.7	-0.2 ±1.5
			250 93.8	93.8	-0.0 ± 1.4		
30-130	dBC	SPL	Fast	94	500	93.8	-0.0 ± 1.4
					1000	93.8	Ref
					2000	93.3	-0.2 ±1.6
					4000	92.2	-0.8 ±1.6
					8000	89.3	-3.0 +2.1; -3.1

Certificate No.: APJ22-071-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.10
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

MAR TESTING LABORED AND LABORED AND MAR TESTING LABORED AND LABORE

Page 4 of 4

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13548-E0)

Microphone:

ACO 7052 (Serial No.:73912)

Preamplifier:

NTi Audio M2211 MA220 (Serial No.:5735)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Address:

Unit E, 12/F, Ford Glory Plaza,

Nos. 37-39 Wing Hong Street,

Cheung Sha Wan, Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

☑ Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 2 February 2023

Date of calibration: 6 February 2023

Date of NEXT calibration: 5 February 2024

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 6 February 2023

Certificate No.: APJ22-124-CC001

Page 1 of 4

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

23.9 °C

Air Pressure:

1006 hPa

Relative Humidity:

47.9 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV220061

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.1	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.1	Ref
30-130	dBA SPL	SPL	Fast	104	1000	104.1	±0.3
				114		114.1	±0.3

Time Weighting

Sett	ing of U	nit-under-t	est (UUT)	Applied value		Applied value UUT Reading, I		IEC 61672 Class 1
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB	
30-130	dBA	SPL	Fast	94	1000	94.1	Ref	
50 150	uD/1	31.1	Slow	94	1000	94.1	±0.3	

Certificate No.: APJ22-124-CC001

(A+A) *L Page 2 of 4

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			Appl	ied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. We	ighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.1	±2.0
					63	94.2	±1.5
					125	94.1	±1.5
					250	94.1	±1.4
30-130	dB	SPL	Fast	94	500	94.2	±1.4
					1000	94.1	Ref
					2000	94.5	±1.6
					4000	95.2	±1.6
					8000	94.9	+2.1; -3.1

A-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.8	-39.4 ±2.0
					63	68.0	-26.2 ±1.5
					125	78.0	-16.1 ±1.5
					250	85.5	-8.6 ± 1.4
30-130	dBA	SPL	Fast	94	500	91.0	-3.2 ±1.4
					1000	94.1	Ref
					2000	95.7	+1.2 ±1.6
					4000	96.2	+1.0±1.6
					8000	93.9	-1.1+2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	91.2	-3.0 ±2.0
					63	93.4	-0.8 ±1.5
					125	94.0	-0.2 ±1.5
					250	94.1	-0.0 ± 1.4
30-130	dBC	SPL	Fast	94	500	94.2	-0.0 ± 1.4
					1000	94.1	Ref
					2000	94.3	-0.2 ±1.6
					4000	94.4	-0.8 ± 1.6
					8000	92.0	-3.0 +2.1: -3.1

Certificate No.: APJ22-124-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.10
	125 Hz	± 0.10
	250 Hz	± 0.05
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ22-124-CC001

CALIBRATION CERTIFICATE

Product

: SOUND CALIBRATOR

Type

NC-75

Serial number

35124527

Manufacturer

RION CO., LTD.

Calibration quantities : Sound pressure level (with reference standard microphone)

Calibration method

: Measured by specified secondary standard microphone

according to JCSS calibration procedure specified by RION.

Ambient conditions

: Temperature 23.9 °C, Relative humidity 49 %,

Static pressure 100.6 kPa

Calibration date

02/11/2022 (DD/MM/YYYY)

Calibration location

3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan

RION CO., LTD. Calibration Room

We hereby certify that the results of this calibration were as follows.

Issue date: 09/11/2022 (DD/MM/YYYY)

Junichi Kawamura

Manager

Quality Assurance Section, Quality Assurance Department, Environmental Instrument Division,

RION CO., LTD.

3-20-41 Higashimotomachi, Kokubunji,

Tokyo 185-8533, Japan

This certificate is based on article 144 of the Measurement Law and indicates the result of calibration in accordance with measurement standards traceable to Primary Measurement Standards (National Standards) which realizes the physical units of measurement according to the International System of Units (SI).

The accreditation symbol is attestation of which the result of calibration is traceable to Primary Measurement Standards (National Standards).

The certificate shall not be reproduced except in full, without the written approval of the issuing laboratory.

The calibration laboratory who issued this calibration certificate conforms to ISO/IEC 17025:2017.

This calibration certificate was issued by the calibration laboratory accredited by IAJapan who is a signatory to the Mutual Recognition Arrangement (MRA) of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Accreditation Cooperation (APAC). This (These) calibration result(s) may be accepted internationally through ILAC/APAC

Certificate No. D224644E

CALIBRATION RESULT

1. Sound pressure level (with reference standard microphone)

Measured	Expanded
value	uncertainty *1
93.99 dB	0.09 dB

Specified secondary standard microphone:

Type

: 4160

Serial number : 2973341

Reference Sound pressure: 2×10⁻⁵ Pa

*1 Defines an interval estimated to have a level of confidence of approximately 95 %.

Coverage factor k=2

Calibration result is the calibration value in ambient conditions during calibration.

BE OUT OF JCSS CALIBRATION

1. Frequency

Measured	Measurement
	uncertainty
value	(k=2)
1000.0 Hz	$2.7 \times 10^{-4} \mathrm{Hz}$

Working measurement standard universal counter:

Type

: 53132A

Serial number : MY40005574

(JCSS Calibration Certificate No. 2208001889940)

2. Total distortion

Measured	
value	
0.2 %	

Working measurement standard distortion meter:

Type

: VA-2230A

Serial number : 11076061

(A2LA Calibration Certificate No. 1502-03109)

· closing ·

Calibration Certificate

Certificate No. 300737

Page

2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q30320

Date of receipt

2-Feb-23

Item Tested

Description: Hot Wire Anemometer

Manufacturer: RS PRO

I.D.

ASCL-EQ-111

Model

: RS-90

Serial No.

: 210722208

Test Conditions

Date of Test: 13-Feb-23

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: T03, Z04.

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S155

Std. Anemometer

206240

NIM-PRC

S223C

Std. Thermometer

205617

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

13-Feb-23

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

E

Calibration Certificate

Certificate No. 300737

Page 2 of 2 Pages

Results:

1. Velocity

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.00	0.00	
2.50	2.43	
5.00	5.04	1 (2 0/ - 6 1: + 0 2/)
10.00	10.07	\pm (3 % of reading + 0.3 m/s)
15.00	15.65	· ·
19.00	19.87	

2. Temperature

Applied Value (°C)	UUT Reading (°C)	Mfr's Spec.
23.12	23.0	±2°C

Remark: 1. UUT: Unit-Under-Test

2. Uncertainty: \pm (0.9 % + 0.16 m/s) for Velocity, \pm 0.1 °C for Temperature, for a confidence probability of not less than 95 %.

3. Atmospheric Pressure: 1 002 hPa

----- END -----

Water Quality

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC070089

Date of Issue

: 31 July 2023

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS (Multi-Parameters)

Manufacturer:

YSI (a xylem brand)

Serial Number:

S/N: 22C106561 26 July 2023

Date of Received:

Date of Calibration:

26 July 2023 26 July 2023

Date of Next Calibration :

25 October 2023

Request No.:

D-BC070089

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500-H+ B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 23e 4500-O G (Membrane Electrode Method)

Turbidity

APHA 21e 2130 B (Nephelometric Method)

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.08	0.08	Satisfactory
7.42	7.36	-0.06	Satisfactory
10.01	10.09	0.08	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
14	14.8	0.8	Satisfactory
25	25.1	0.1	Satisfactory
36	36.3	0.3	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	10.02	0.20	Satisfactory
20	20.63	3.15	Satisfactory
30	31.61	5.37	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning
Assistant Manager

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC070089

Date of Issue

: 31 July 2023

Page No.

: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.38	7.42	0.04	Satisfactory
6.30	6.38	0.08	Satisfactory
4.90	4.83	-0.07	Satisfactory
1.00	1.03	0.03	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.10		Satisfactory
10	9.88	-1.20	Satisfactory
20	21.25	6.30	Satisfactory
100	102.97	3.00	Satisfactory
800	787.11	-1.60	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

Remark(s)

- •The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- ·The results relate only to the calibrated equipment as received
- •The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- 'The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC050055

Date of Issue

: 17 May 2023

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

HORIBA U-53

Manufacturer:

HORIBA

Serial Number:

PORBNFNT

Date of Received:

11 May 2023

Date of Calibration:
Date of Next Calibration:

17 May 2023 16 August 2023

Request No.:

D-BC050055

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500 H+

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 21e 4500 O

Turbidity

APHA 21e 2130 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.14	0.14	Satisfactory
7.42	7.45	0.03	Satisfactory
10.01	10.06	0.05	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
16	17.5	1.5	Satisfactory
24	25.7	1.7	Satisfactory
32	32.3	0.3	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.66	-3.40	Satisfactory
20	19.52	-2.40	Satisfactory
30	30.20	0.67	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning
Assistant Manager (Chemical Testing)

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC050055

Date of Issue

: 17 May 2023

Page No.

: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
8.22	7.88	-0.34	Satisfactory
4.31	3.90	-0.41	Satisfactory
1.81	1.37	-0.44	Satisfactory
0.07	0.00	-0.07	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.00		Satisfactory
10	10.8	8.00	Satisfactory
20	20.0	0.00	Satisfactory
100	106	6,00	Satisfactory
800	811	1.40	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

Remark(s)

- 'The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- ·The results relate only to the calibrated equipment as received
- The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- 'The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Calibration Certificate

Certificate No. 210252

Page 2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q24081

Date of receipt

31-Oct-22

Item Tested

Description : Flow Probe

Manufacturer: Global Water

I.D.

Model

: FP111

Serial No.

: 22K100859

Test Conditions

Date of Test:

7-Nov-22

Supply Voltage : --

Ambient Temperature :

23°C

Relative Humidity: 78%

Test Specifications

Calibration check.

Ref. Document/Procedure: V12

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S179

Std. Tape

201868

NIM-PRC

S136A

Stop Watch

201878

SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Kin Wong

Approved by:

This Certificate is issued by

Hong Kong Calibration Ltd.

7-Nov-22

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 210252

Page 2 of 2 Pages

Results:

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.96	1.0	± 0.1 m/s

Remarks: 1. UUT: Unit-Under-Test

2. Uncertainty: ± 1 %, for a confidence probability of not less than 95%.

----- END -----

Landfill Gas

CERTIFICATION OF CALIBRATION

Date Of Calibration: 17-Aug-2022 Certificate Number: G508566_2/31066

Issued by: QED Environmental Systems Ltd.

Customer: Onuee Electronics Ltd

C3-E TCL Science Park No.1001 Zhong Shan Yuan Rd.

Nanshan Shenzhen 518052 CHINA

Description: Gas Analyser

Model: GEM5000

Serial Number: G508566

UKAS Accredited results:

Methane (CH₄)		
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
5.0	4.9	0.072
15.0	14.9	0.13
60.0	59.6	0.42

	Carbon Dioxide (CO₂)	
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
5.0	5.0	0.074
15.0	14.9	0.13
40.0	40.0	0.29

Oxygen (O ₂)		
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
21.2	21.3	0.25

All concentrations are molar.

CH₄, CO₂ readings recorded at :

33.0 °C ± 2.5 °C

O2 readings recorded at:

22.7 °C ± 2.5 °C

Barometric Pressure :

1002 mbar ± 4 mbar

Method of Test: The analyser is calibrated in a temperature controlled chamber using a series of reference gases, in compliance with procedure LP004.

Instrument has passed calibration as the measurement result is within the specification limit. The specification limit takes into account the measurement uncertainty.

The results relate only to the item calibrated

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 114 IGC Instance: N/A

Page 1 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

CERTIFICATION OF CALIBRATION

Certificate Number: G508566 2/31066

Date Of Calibration: 17-Aug-2022

Issued by: QED Environmental Systems Ltd.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Calibrations marked 'Non-UKAS Accredited results' on this certificate have been included for completeness.

Non-UKAS accredited results after adjustment:

Barometer (mbar)			
Reference	Instrument Reading		
1002	1002		

Additional Gas Cells					
Gas	Gas Certified Gas (ppm) Instrument Reading				
H ₂ S	52.6	53			

Date of Issue: 18-Aug-2022

Approved by Signatory

Keeley Knight

Laboratory Inspection

End of Certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 114 IGC Instance: N/A

Page 2 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

PROMAT (HK) LTD

寶時(香港)有限公司

901 New Trend Centre, 704 Prince Edward Road East, San Po Kong, Kowloon, Hong Kong Tel: (852)2661-2392 Fax: (852)2661-2086 Email:info@promat.hk. http://www.premat.hk

Calibration Certificate

Customer Name

Paul Y Construction Co. Ltd

Model

PS200

Serial

373075

Tested On

16 November, 2022

Cal Expires

16 November, 2023.

Audible Alarm

PASS

Visual Alarm

PASS

Calibrated For

METHANE

100% LEL Equivalent

4.4% by VOL

Overall Results

PASS

Calibration Result

Gas Applied	Range	Reading	Calibrated	Result
Zero Air	% LEL	0	0	PASS
Zero Air	% O2	20.9	20.9	PASS
Zero Air	РРМ СО	0	0	PASS
Zero Air	PPM H2S	0	0	PASS

Gas Applied	Range	Reading	Calibrated	Result
50% LEL Methane	% LEL	61	50	PASS
18% VOL Oxygen	% O2	17.8	N/A	PASS
100 PPM Carbon Monoxide	РРМ СО	71	100	PASS
25 PPM Hydrogen Sulphide	PPM H2S	22	25	PASS

Calibrated By Ivan Lo:

